


Peter Dalmaris, PhD

ESP32 and Node-RED

Get the most out of your 
ESP32 with articles from 
the Tech Explorations Blog

Extracted from https://techexplorations.com 
Page 1

https://techexplorations.com


Welcome to this special collection of articles, 
meticulously curated from the Tech Explorations blog 
and guides. As a token of appreciation for joining our 
email list, we offer these documents for you to 
download at no cost. Our aim is to provide you with 
valuable insights and knowledge in a convenient 
format. You can read these PDFs on your device, or 
print.

Please note that these PDFs are derived from our blog 
posts and articles with limited editing. We prioritize 
updating content and ensuring all links are functional, 
striving to enhance quality continually. However, the 
editing level does not match the comprehensive 
standards applied to our Tech Explorations books and 
courses.

We regularly update these documents to include the 
latest content from our website, ensuring you have 
access to fresh and relevant information.

Extracted from https://techexplorations.com 
Page 2



License statement for the PDF documents on this 
page

Permitted Use: This document is available for both educational 
and commercial purposes, subject to the terms and conditions 
outlined in this license statement.

Author and Ownership: The author of this work is Peter 
Dalmaris, and the owner of the Intellectual Property is Tech 
Explorations (https://techexplorations.com). All rights are 
reserved.

Credit Requirement: Any use of this document, whether in part 
or in full, for educational or commercial purposes, must include 
clear and visible credit to Peter Dalmaris as the author and Tech 
Explorations as the owner of the Intellectual Property. The credit 
must be displayed in any copies, distributions, or derivative 
works and must include a link to https://techexplorations.com.

Restrictions: This license does not grant permission to sell the 
document or any of its parts without explicit written consent 
from Peter Dalmaris and Tech Explorations. The document 
must not be modified, altered, or used in a way that suggests 
endorsement by the author or Tech Explorations without their 
explicit written consent.

Liability: The document is provided "as is," without warranty of 
any kind, express or implied. In no event shall the author or 
Tech Explorations be liable for any claim, damages, or other 
liability arising from the use of the document.

By using this document, you agree to abide by the terms of this 
license. Failure to comply with these terms may result in legal 
action and termination of the license granted herein.

Extracted from https://techexplorations.com 
Page 3



1. Introduction to Node-RED, examples and
documentation
Node-RED guide series

Introduction to Node-
RED: examples and
documentation
The Guides in this series are dedicated to Node-RED. Learn
about Node-RED, understand what you can do with it with the
help of examples, how to install it, and how to use some of the
basic nodes that come with it.

Hi and welcome to the Node-RED guide series from Tech
Explorations.

In this guide, you will learn about Node-RED through examples.
Starting with this article, and continuing with the rest of the
articles in this series, I’ll show you how to install Node-RED on

Extracted from https://techexplorations.com 
Page 4



your Raspberry Pi, explain the use of some of its most
important nodes and how they work inside simple flows.

What is Node-RED?
Node-RED is a programming tool.

Actually, a better term to describe it is as a “programming
environment”.

Node-RED uses graphical flows and nodes, which have
individual components in a flow to essentially create a
program. What I really like about Node-RED is that it is both
graphical, so it gives you the visual capability of creating a
program but, also, it allows you a lot of functional control
through JavaScript. JavaScript is the programming language
that is underlying Node-RED.

Node-RED is a programming environment that operates inside
a browser.

You use Node-RED to create graphical programs, which are
called flows.

Flows are composed of nodes, which are rectangular objects
that you see in the example below.

Extracted from https://techexplorations.com 
Page 5



An example flow from the course.

To construct a flow we use a drag and drop interface. With this
interface, it is easy to assemble nodes in configurations that
result is a program that does something useful. Each node is
pre-programmed to do something specific (similar to a
function in a text language line Python or Ruby). You can
create custom nodes that contain your choice of JavaScript,
similar to custom functions in text languages.Node-RED comes
with several built-in nodes, but you can also install third-party
nodes. Just like in the Arduino, you can install third-party
libraries, and I’m going to show you more about this in a
moment.The name Node-RED comes from the underlying
technology on which it is built, which is Node.js, which is a
JavaScript framework. It’s a very lightweight development
environment and runtime environment, which makes it
excellent for creating applications that are supposed to be
very nimble and very fast in their execution, so they can run
on low-cost hardware such as the Raspberry Pi.Node-RED is
open source. And as a result, there’s a lot of people that are
contributing to it. It’s been around for a long time, and it’s
really stable and used by hobbyists and large corporations
alike.

Extracted from https://techexplorations.com 
Page 6

https://nodejs.org/
https://en.wikipedia.org/wiki/JavaScript


Node-RED home on the Web
The home of Node-RED on the web is nodered.org.

Take a few minutes to browse through the Node-RED website. 
You will find information about its features, “flows” (the term 
that means “Node-RED program”), and “nodes”, which are the 
functional components of a flow. And just scrolling down this 
page, you will see its basic features.

Demonstration
In the video that I have included at the top of this page, you 
can watch a demonstration of the Node-RED. It starts around 
the third minute of the video.

I have done a fresh installation of Node-RED here installed on 
my Raspberry Pi 4. I am demonstrating one of the latest 
versions of the flow that makes up the brains of the terrarium 
controller from my video course.

In the demonstration I show:

The Node-RED web-based flow editor.
Use of tabs to run many flows at once.
Dive into several nodes, such as the one for
the DHT22 sensor, the MQTT-in node, the
function node, the HTTP Post node, and
more.

This flow implements a full automation control and IoT system,
that works in tandem with an ESP32 to control a simple
terrarium.

You can use specialized nodes to do things such as:

inject timestamps if you want to keep track
Extracted from https://techexplorations.com 

Page 7

https://nodered.org


of time,
manually trigger another node,
inject text, numbers, JSON or other data-
types in the flow,
print out debug notifications during the flow
execution,
implement websocket functionality

I encourage you to watch the demonstration in the video for
the details.

Documentation
Node-RED has got some amazing documentation.

If you’re just starting now, I recommend you have a look at
Getting Started, and then the User Guide.

In Getting Started you will find information on how to install
the Node-RED on a variety of computers. This is the source
that I also follow in the next article of this series, where I do a
fresh install of Node-RED on my Raspberry Pi.

In the documentation you will find tutorials and a cookbook
which are also very useful. The cookbook, for example, tells
you exactly how to do specific things. So, a fairly
comprehensive list here.Let’s move on to the next lecture now,
where I’ll show you how to install Node-RED on the Raspberry
Pi. Just keep in mind that the Raspbian OS or Raspberry Pi OS
does come with Node-RED already installed, but I prefer to just
go for a fresh install, so we have total control of what is
running on your Raspberry Pi.

Extracted from https://techexplorations.com 
Page 8

https://nodered.org/docs/
https://nodered.org/docs/user-guide/
https://nodered.org/docs/getting-started/
https://nodered.org/docs/tutorials/
https://cookbook.nodered.org/


2. Install Node-RED on the Raspberry Pi
Node-RED guide series

Install Node-RED on the
Raspberry Pi
Node-RED comes already installed in the Raspberry Pi
operating system. Nevertheless, installing a fresh copy is easy,
and you get the benefit of working with the latest and greatest
version of the tool.

In this article I will show you how.

In this article, I’ll show you how to install Node-RED on your
Raspberry Pi.

To do that, I’ll be following the instructions provided in the
Node-RED documentation.

Extracted from https://techexplorations.com 
Page 9

https://nodered.org/docs/getting-started/raspberrypi


Update npm
Login to your Raspberry Pi, as “pi”. The default password for
the “pi” user is “raspberry”.

Start by installing the “git” repository tools, as well as the
essential build tools that will be needed in the next step.

Here is the command:

~$ sudo apt install build-essential git

It looks like this:

Install the “git” and “build-essential” tools.

Extracted from https://techexplorations.com 
Page 10



Install Node-RED
Next, run this bash command to install a fresh copy of Node-
RED:

~$ bash <(curl -sL
https://raw.githubusercontent.com/node-red/linux-installers/m
aster/deb/update-nodejs-and-nodered)

Type “y” in the two installer questions.

The installer will ask two questions before it begins the
installation, to which you should respond with “Y”.

Around 20 minutes later, the installation will complete, and

Extracted from https://techexplorations.com 
Page 11



you will see information about your new Node-RED setup in the
console.

Success looks like this:

Node-RED is now installed on your Raspberry Pi.

Node-RED is now installed. Notice that the installer suggests
that you start the Node-RED service using the “node-red-start”
command.

But wait a sec…

How to start Node-RED
There are a few different ways to start the Node-RED service.

Extracted from https://techexplorations.com 
Page 12



The easiest is to follow the prompt of the installed, and just
type:

~$ node-red-start

This will work fine, especially on a Raspberry Pi 4 with more
than 2 GB of RAM.

For earlier Raspberry Pi’s, or computers with limited RAM, it’s
better to specify the amount of RAM available like this:

~$ node-red-pi –max-old-space-size=256

This will instruct the Node-RED service to quickly free up any
unused memory so that other services of the operating system
can use them.

Regardless of which method you choose, the Node-RED service
will begin within a few seconds, and indicate that it is running
on localhost, default port 1880.

You can point your browser to this URL:

http://nodered.local:1880

The URL “nodered.local” is the hostname of my Raspberry Pi.
You can use your RPi IP address instead of the hostname.

Extracted from https://techexplorations.com 
Page 13



Node-RED running in my browser for the first time.

If you use one of the above methods to start Node-RED, you
can stop the service by typing Ctr-C.

Run Node-RED as a service
Node-RED can run as a background service. The benefit of this
is that you can set it to autostart when the operating system
boots, instead of having to start it manually.

You can manually start the Node-RED service using the “node-
red-start” command. This will produce this output:

Extracted from https://techexplorations.com 
Page 14



Node-RED is installed, and already running on your Raspberry
Pi.

This output contains the IP address and port number for the
new Node-RED service (1), as well as the systemd commands
for starting and stopping the service (2).

Node-RED is now running as a service. You can point your
browser to the URL that is indicated in (1).

Autostart the Node-RED service on boot
To automatically start the Node-RED service on boot, use this
command:

~$ sudo systemctl enable nodered.service

Now, when your Raspberry Pi starts, the Node-RED service
with begin automatically.

Extracted from https://techexplorations.com 
Page 15

https://en.wikipedia.org/wiki/Systemd


Try this:

Type “sudo reboot”, to reboot the Raspberry1.
Pi
Wait for a couple of minutes for the reboot2.
to complete
Use your browser to access Node-RED3.

Node-RED should load in your browser, and operate normally.

Node-RED offers many configuration options. I will review
some of them in the next article.

Extracted from https://techexplorations.com 
Page 16

https://wp.techexplorations.com/wp-content/uploads/2020/08/NodeRed-and-ESP32-project_-Make-a-Terrarium-controller-TechExplorations-SQUARE_320.png


3. Node-RED Configuration
Node-RED guide series

Node-RED Configuration
The Node-RED service has a configuration file.

In this file, you can set various configuration options and
customize your Node-RED installation to better suit your
needs.

At this point, you’ve got a fully functioning Node-RED
installation on your Raspberry Pi. You can actually go ahead
and start creating your flows.

But you should be aware that the Node-RED service is
configurable via a settings text file. In this file, you can set
various configuration options and customize your Node-RED
installation to better suit your needs.

Extracted from https://techexplorations.com 
Page 17



The Node-RED configuration file
You can find details about the Node-RED configuration file in
the Node-RED documentation.On the Raspberry Pi, the location
of the configuration file is:

/home/pi/.node-red

In the hidden “.node-red” directory, Node-RED stores your
flows, nodes, and, of course, its configuration file.

The configuration file is named “settings.js”.

Go in the node-red directory and open it using the nano editor:

pi@rpi4:~ $ cd .node-red/pi@rpi4:~/.node-red $ nano
settings.js

Below you can see a section of this file:

Extracted from https://techexplorations.com 
Page 18

https://nodered.org/docs/user-guide/runtime/settings-file


Part of the Node-RED settings.js file.

Most of the configuration options are commented out. You can
enable them by removing the two forward slashes at the start
of the corresponding line.Here’s a couple of interesting
configuration options:

“flowFile“: this is the file that contains your
flows. You can customise its location and
name with this setting.
“uiPort“: this setting controls the port
number under which the web user interface
is accessible. The default is “1880”, but you

Extracted from https://techexplorations.com 
Page 19



can change it to something else.
“userDir“: this setting controls the location
of the Node-RED directory, which is where
this configuration file, and the user flows
and nodes are stored.
“nodesDir“: you can set an additional
location that contain nodes (apart from the
default userDir). If you enable this setting,
Node-RED will scan in nodeDir for additional
nodes.
“adminAuth“: you can protect the
administrator or editor functions of your
Node-RED service by setting up one or more
user names and passwords. Each user may
have their own set of credentials. Learn
more about this in the documentation.
And many more.

You can find a full list of configuration options in the
documentation page.For the purposes of my Node-RED &
ESP32 project, I have left my configuration with its default
settings.

Let’s continue this series with the next article in which I will
discuss Node-RED nodes.

Extracted from https://techexplorations.com 
Page 20

https://nodered.org/docs/user-guide/runtime/securing-node-red#usernamepassword-based-authentication
https://nodered.org/docs/user-guide/runtime/configuration


4. Node-RED Nodes
Node-RED guide series

Node-RED Nodes
Learn about some of the most important nodes, have a look at
their properties, learn how to configure them and learn how to
install third-party nodes that are available in the Node-RED
library.

In this article, I will show you some of the most important
nodes, have a look at their properties, learn how to configure
them, and learn how to install third-party nodes that are
available in the Node-RED library.

The nodes toolbar
On the left toolbar, you can see the list of default or built-in
nodes that come with a fresh installation of Node-RED. You can
add more nodes from the Node-RED library, and, of course,
create your own nodes.

Extracted from https://techexplorations.com 
Page 21

https://flows.nodered.org/


All available nodes are available from the left toolbar.

Node example: “debug”
A very common node called “debug”. Find it under “common”
and drag it on to the flow canvas. The purpose of the “debug”
node is to output text to the debug window that can appear on
the right toolbar.

In the image below, you can see a debug node on the canvas,
with its properties tab and output tab open.

Extracted from https://techexplorations.com 
Page 22



The “debug” node with its properties tab and output tab open.

To reveal the properties of any node, double-click on the node.
This will reveal the edit pane. Depending on what kind of node
it is, the properties tab will have its own configuration options
and set of widgets that you can interact with toset up the
node.

The debug node allow us to send a string of text to the debug
pane that you can see in the image above. The string that is
shown in the debug pane is passed on to the debug node from
the previous node in the same flow. Of course, you can
configure exactly what it is that your want the debug node to
output.

The debug node is one of the most commonly used nodes in
Node-RED flows. It is the equivalent of the “Serial.print()”
function of an Arduino sketch.

Extracted from https://techexplorations.com 
Page 23



Keep in mind that a debug node can send a string to the
debug pane, but also to the system console. In most cases,
you want to send it out to the debug console. You may want to
send debug messages the system console, which is
particularly useful if you are running Node-RED on the
command line.

You can customize the name of a node. In this case, I’ll call this
debug node “example debug node.” Just type the name you
want in the “Name” attribute of the node.

You should always give your nodes appropriate names to
make it easy to understand what is happening in a flow. This is
similar to how we want to give reasonable names to variables
and functions in a text programming language.

Give nodes reasonable names.

Node information
You can get information about the properties of a node by
clicking on the “i” button. This will reveal the “info” tab.

Extracted from https://techexplorations.com 
Page 24



Use the Info tab to see the node properties.

The information that you will see in the info tab depends on
the type of node you are looking at, but all nodes have at least
these attributes: node ID, type, and active.

Node documentation
Node-RED has a built-in documentation system. You can see
the documentation attached to a node by clicking on the book
icon.

Extracted from https://techexplorations.com 
Page 25



Use the “Help” tab to see the node documentation.

Node example: “inject”
Let’s have a look at another node: inject.

The “inject” node is useful when you want to inject a string
into another node.

In the example below, I have exposed the Edit pane of an
inject node named “Hello”. In the properties tab, you can see
the various types of payloads that the inject node can inject to
another node (such as the “debug” node).

The payload can be a fixed string, a number, a boolean, a JSON
expression, a flow variable, among other things.

In the example below, I have set the payload to a fixed string
as part of my testing along side a Google Sheet node.

Extracted from https://techexplorations.com 
Page 26



The arrow points to the Hello “inject” node.

Manage palettes
To install a node or flow from the Node-RED library, you will
use the Palettes Manager. You can access the Palettes
Manager via the burger menu, at the top right corner of the
Node-RED editor window.

Extracted from https://techexplorations.com 
Page 27



Manage palettes from the burger menu.

Via the Manage Palette tool you can install contributed flows,
nodes or collection of nodes.A particularly useful collection of
nodes that I will be using a lot in this project is called “node-
red-dashboard”. To install it, simply search for “dashboard”,
find it in the list with the search results, and click on “install”.

Extracted from https://techexplorations.com 
Page 28



The “node-red-dashboard” node.

While you are in the Palette Manager, also search for and
install the “dht22” node (look for the one named “node-red-
contrib-dht-sensor”).

The new nodes will appear in the left tool bar. Here’s what the
new nodes for the dashboard look like:

Extracted from https://techexplorations.com 
Page 29



Extracted from https://techexplorations.com 
Page 30



These nodes below to the dashboard group.

You can use these nodes in your flows to create dashboards
like this:

An example Node-RED dashboard.

Settings
You can access the Settings pane from the burger menu:

Extracted from https://techexplorations.com 
Page 31



Access the Settings pane from the burger menu.

From the Settings pane, you can configure your working area,
the application language, the grid size, etc. You can also set
your favorite keyboard shortcutts.

Extracted from https://techexplorations.com 
Page 32



The User Settings pane.

In order to make nodes do something useful, we need to
connect them together into flows.

In the next article in this series, I will to show you how to
create simple flows using a handful of basic nodes.

Extracted from https://techexplorations.com 
Page 33



5. Node-RED flows
Node-RED guide series

Node-RED Flows
Nodes, on their own, are not very useful. For them to be
useful, they must to be connected and configured inside flows.

In this article, I will show you how to create your first Node-
RED flows.

In the previous article in this series, I did quick introduction of
Node-RED nodes. On their own, nodes are not very useful. For
them to be useful, they must to be connected to other nodes
and configured inside flows. In this article I’m will show you a
few simple examples of nodes configured into flows to help
you get started. For the examples that follow, I will be using
the DHT22 node. For this purpose, I have connected a DHT22
sensor to my Raspberry Pi.

If you don’t know how to connect a DHT22 sensor to your
Raspberry Pi, please read this article from the Raspberry Pi
guides series.

Extracted from https://techexplorations.com 
Page 34

https://techexplorations.com/guides/rpi/begin/dht22-git/


My Raspberry Pi2 “wearing” my DHT22 HAT.

Create a new flow
To create a new flow, click on the “+” button, on the top right
corner of the designer canvas.

Create a new flow.

This flow will contain only two nodes: “inject” and “debug”.
Find the two nodes unde the “common” group, and arrange
them in the canvas like in the screenshot below:

Extracted from https://techexplorations.com 
Page 35



A flow with two nodes.

This flow will perform this operation: when I click on the inject
node button, the string “HELLO”, will be sent over to the next
node. In this case, the next node is the “debug” node, which
will print the message in the debug window.

The inject node is on the left, and the debug node on the right.
Connect them by clicking and holding on the circle of the inject
node, then place the mouse pointer over the circle of the
debug note, and release.

Next, configure the inject node. Double-click on it to reveal its
properties.

In the “msg” field, select “payload”, and for the payload type
select the string option (designated by the “az” icon).

In the payload field, type “HELLO”.

Click on “Done” to exit the inject node pane.

Extracted from https://techexplorations.com 
Page 36



The inject node properties.

Next, double-click on the debug node. There’s only a couple of
attributes to set.

The first one is the “output”. In the “inject” node, you stored
the string in the “msg.payload” variable. Therefore, in the
debug node, you should read the output from the
“msg.payload” variable.

Also, in the Name attribute, give this node the name “Example
debug node”.

The debug node edit pane will look like this:

Extracted from https://techexplorations.com 
Page 37



The “debug” node properties.

Let’s test out the new flow. Click on the red Deploy button:

Click on “Deploy” to execute the flow.

Your flow is now running. Click on the button of the inject
node, and notice that the string “HELLO” appears in the debug
pane.

If the debug pane is not visible, click on the small button with
the bug icon.

Extracted from https://techexplorations.com 
Page 38



The debug pane will show a new message each time you click
on the inject node button. The message will include a
timestamp, the name of the debug node that printed it, and
the name of the variable that contained it (“payload”).

Also notice that each time that you click on the inject button, a
green notification appears in the Node-RED editor window.

The outcome of this simple flow.

A flow with the DHT22
Let’s try another flow. In this flow, we’ll use the DHT22 node to
get a temperature reading from the sensor. We’ll use a debug
node to show the temperature.

I’d like to get a new reading every 10 seconds, so I will add a
trigger node to the flow. Finally, I’d like to trigger the flow
manually, so I’ll use an inject node which has a very useful
button.

Here’s the flow, assembled:

Extracted from https://techexplorations.com 
Page 39



This flow will display the temperature in the debug window,
every 10 seconds.

Below I provide the configuration of each node.

Extracted from https://techexplorations.com 
Page 40



The trigger node.

The DHT22 node.

Extracted from https://techexplorations.com 
Page 41



The debug node.

The inject node.

Once you assemble the flow, click on “Deploy” and then click
on the inject button to start the trigger. After this, a new
temperature value will appear in the debug window, every ten
seconds.

Extracted from https://techexplorations.com 
Page 42

https://wp.techexplorations.com/wp-content/uploads/2020/08/NR-05-50-SCREEN-Flows-00-08-46-396.jpg
https://wp.techexplorations.com/wp-content/uploads/2020/08/NR-05-50-SCREEN-Flows-00-08-18-734.jpg


The flow outcome.

You can see the process of putting the flow together in detail
in the video. This experiment begins at approximately 5 mins
and 40 seconds in the video.

A flow with a function node
Let’s try an experiment that involves a flow with a function
node. Function nodes are very useful and very flexible: you
can write custom JavaScript that will run inside the node, and
process inputs in any way you want.

The flow in this experiment will contain an inject node, a
function node, and three debug nodes. It will demonstrate how
you can do simple processing using JavaScript and drive three
outputs.

The flow looks like this:

Extracted from https://techexplorations.com 
Page 43

https://wp.techexplorations.com/wp-content/uploads/2020/08/NR-05-50-SCREEN-Flows-00-09-38-110.jpg


A simple flow that contains a function node.

The function node is in the middle of the flow. Notice that it
has three outputs, and those are connected to the debug
nodes. One debug node actually receives input from two
function node outputs. This design is legitimate.

In the video in this article you can see, in detail, how I
assemble this flow. The relevant part starts at around 14
minutes and 20 seconds in.

What is most interesting in this flow, is the JavaScript in the
function node, and its configuration.

It looks like this:

Extracted from https://techexplorations.com 
Page 44



This function node has three outputs.

The JavaScript is very simple. It contains three local variables,
msg1, msg2 and msg3. Each contains a small JSON document,
with a payload and a one-character string in it.

Extracted from https://techexplorations.com 
Page 45



The return statement is an array with three fields.

At the bottom of the Edit pane, I have set the number of
outputs to three, as many as there are fields in the return
array.

Each field of the return array becomes an output.

The first field is outputted from the top output in the graphical
symbol of the function node.

The second field is outputted from the middle output.

And the third field is outputted from the bottom output.

Isn’t this neat?

Functions, of course, are extremely powerful.

Anything you can do with JavaScript, any kind of program you
can imagine, you can go in here to do processing for various
inputs and then to create appropriate outputs for further down
into the flow.

Let’s move on to the next article where you will learn about
Node-RED variables.

Extracted from https://techexplorations.com 
Page 46



6. Node-RED messages and variables
Node-RED guide series

Node-RED Messages and
Variables
Messages and variables are provide a mechanism by which
nodes can pass data to each other and around the Node-RED
flow.

In this article, I will explain the basics of messages and
variables.

Documentation for messages and
variables
If you have read the previous article in this series, you have
already seen messages in action. There, I shows you a couple
of examples the included the “msg” object.

Extracted from https://techexplorations.com 
Page 47

https://techexplorations.com/guides/esp32/nore-red-esp32-project/node-red-flows/


In this article I will expand on messages and introduce Node-
RED variables.

I also recommend that you have a look at the official Node-
RED documentation, where messages and variables are
covered in detail. You should also read the documentation
page on context.

Messages vs variables
A confusion that arises among people that are new to Node-
RED has to do with the differences and similarities between
messages and variables.

Let’s clear this up right now.

Similarities
Both messages and variables are used to pass data from one
node to another.

That’s it.

Differences
A message can only be passed from a node to the very next
node to which it is connected.

A variable can be passed between a node to any other node.
Variables can be passed between nodes that are not directly
connected. Variables can even be passed between nodes that
belong to different flows.

Messages
The main thing to remember about messages, is that the data
that you want to pass to the next node is contained within an

Extracted from https://techexplorations.com 
Page 48

https://nodered.org/docs/user-guide/messages
https://nodered.org/docs/user-guide/environment-variables
https://nodered.org/docs/user-guide/context


object named “msg”. The msg object may contain as many
attributes as you want. Some of those attributes are built-in,
but you can also create your own.

The most important attribute is called “payload”.

Most nodes will automatically save data in the payload
attribute. For example, consider the MQTT-in node:

The MQTT-in node will store data in the msg.payload attribute.

This node (like most other nodes), will store data in the
msg.payload attribute. This is done by convention. You don’t
have to do anything specific to make this happen.

Because of this, you know that you can get the data you need
to process or display in the next node by reading the contents
of the payload.

Here is an example of displaying the MQTT-in node data using
a debug node:

Extracted from https://techexplorations.com 
Page 49



Get the MQTT-in data from the payload attribute of the msg
object.

Notice that the output of the debug node comes from the msg
object. In the text field, I have typed “payload” so that I can
access the payload data.

In the payload, you can store these types of data:

Boolean. Valid values: true, false
Number, such as 0, 123.4
String, such as “hello”
Array, such as [1,2,3,4]
JSON Object, such as { “a”: 1, “b”: 2}
Null

JSON object payloads are very flexible. As long as the JSON
expression is valid, it can be stored in the message payload.

In the example below, you can see an inject node where I have
set it’s payload to contain a JSON document.

Extracted from https://techexplorations.com 
Page 50

https://jsonlint.com/


The payload of this inject node is a JSON document.

In the inject node, you can insert the JSON document in the
payload by selecting the appropriate JSON data type, and then
clicking on the button marked “…” (see arrow “1”).

This will show the JSON editor:

The JSON editor.

The JSON editor makes it easy to create a JSON document.
There is also a visual editor tab that allows you to browse
through a JSON document.

Extracted from https://techexplorations.com 
Page 51



You can pass this JSON (or other datatype) payload to the next
node. For example, if the next node is a debug node, it will be
configured like this:

A debug node configured to receive a message payload.

In the debug window, the JSON document will look like this:

Extracted from https://techexplorations.com 
Page 52



JSON output from a debug node.

Some nodes, such as the inject node, can also work with
custom attributes attached to the msg object. Here is an
example:

Extracted from https://techexplorations.com 
Page 53



This inject node msg object contains custom attributes.

In this example, I have created two custom attributes, a
number and a string. I can use these attributes in the next
node by referencing them:

Extracted from https://techexplorations.com 
Page 54



I can access the data in the custom attributes by referencing
the attribute name.

Variables
Next up: variables.

With variables you can share data across any nodes, and even
flows.

Think of variables in Node-RED as variables in a programming
language like Ruby and Python. In such languages we have
global and local variables. Access to the variable depends on
the variable’s scope.

Similarly in Node-RED, we have the concept of scope, and as a
result there are variables that allow access to their values
depending on their scope.

You can learn more about context in Node-RED by reading this
documentation page.

Extracted from https://techexplorations.com 
Page 55

https://nodered.org/docs/user-guide/context


In Node-RED there are three scopes:

Node (equivalent to a local variable in
Python). It is only visible to the node that set
the value.
Flow (equivalent to a global variable in
Python). It is only visible to all nodes on the
same flow (or tab in the editor)
Global (equivalent to a system variable in
Python) – visible to all nodes

A global variable is can be set by a node in one flow, and be
read by another node in any other flow. In a programming
language like Python, this is roughly equivalent to the concept
of cross-process (or inter-process) communication.

Most often you will be working within a flow context. In such
case, you can set a flow variable using the “flow.set()”
function.

Here is an example from the Terrarium project:

Set a flow variable.

In this example, I set a flow variable called

Extracted from https://techexplorations.com 
Page 56

https://docs.python.org/3/library/ipc.html


“soil_humidity_threshold” to the value stored in msg.payload.

To read a flow variable, you can use the “flow.get()” function.
Here is an example from another function node:

Edit your caption text here

Here, I read the value stored in a flow variable called
“raw_humidity_value”, and apply it to a calculation.

The video at the top of this page contains detailed examples of
messages and variables.

At this point, you have a good basis for getting into hands-on
examples of flows that contains the most common Node-RED
nodes.

In the next article, you will dive into the debug node.

Extracted from https://techexplorations.com 
Page 57



7. The "complete" node
Node-RED guide series

Node-RED, the
“complete” node
Learn about the “complete” node and how to use in your flow 
to trigger an action

With the “complete” node, your can trigger a node in your flow
when any other node (that supports this functionality)
completes it’s operation.

In this article, I will demonstrate the use of the “complete”
node through an example.

You can find the “complete” node under “common” in the left
toolbar.

Extracted from https://techexplorations.com 
Page 58



The “complete” node.

Setup the “complete” node
Let’s experiment with the “complete” node.

We’ll use the test flow from the previous article on “flows”.

Extracted from https://techexplorations.com 
Page 59

https://techexplorations.com/guides/esp32/nore-red-esp32-project/node-red-flows/


The “Completed” debug node is triggered when “test” finishes.

In the original flow, I have added two nodes: a “complete”
node that monitors the “test” node for completion, and a
“debug” node.

The “complete” node is titled “Start when Function node
completes”.

The “debug” node is titled “Completed”.

I have not made any changes to the original 5 nodes of the top
row of the flow.

When the “test” function node completes its operation, the
“Start when Function node completes” node is notified, and
that triggers the “Completed” node.

In addition to the notification, the data from the node that has
completed (“test” in this this case), is also passed along. So,
the “Completed” node has access to the msg object of the
“test” node.

In the screenshot below, you can see how I have configured
the “complete” node titled “Start when Function node
completes”:

Extracted from https://techexplorations.com 
Page 60

https://wp.techexplorations.com/guides/esp32/nore-red-esp32-project/node-red-messages-variables/


The configuration of the “complete” node.

Double-click on the “complete” node to reveal its edit pane. In
the Properties tab you will see a list of other nodes in the flow
that are able to provide completion notifications.

Just click on one or more nodes that you want this “complete”
node to receive completion notifications.

That’s it.

After you deploy the flow, every time that any of the selected
nodes completes its operation, your “complete” node will be
notified, and whichever node is wired at its output will be
triggered. The msg object of the completed node is also
passed to the triggered node.

Extracted from https://techexplorations.com 
Page 61



8. The "catch" node
Node-RED guide series

Node-RED, the “catch”
node
With the “catch” node, your flow can catch errors thrown by 
any node that belongs to the same flow.

The “catch” node is used for catching exceptions in your flow.
Once the “catch” node catches an exception, it can pass the
relevant information in the msg object to another node, such
as a “debug” node, which can handle it.

The “catch” node is similar to Python’s “try” statement or
Ruby’s “throw” statements.

All these, “catch” in Node-RED, “try” in Python, and “throw” in
Ruby have the same purpose: to make it possible for your
program to detect an exception condition and handle it
gracefully instead of simply “crashing”.

Extracted from https://techexplorations.com 
Page 62

https://docs.python.org/3/reference/compound_stmts.html#try
https://ruby-doc.org/core-2.7.1/Kernel.html#method-i-throw


You can find the “catch” node under “common” in the left tool
bar.

The “catch” node.

Setup the “catch” node
Let’s experiment with the “catch” node.

We’ll use the test flow from the previous article on “flows”.

Extracted from https://techexplorations.com 
Page 63

https://techexplorations.com/guides/esp32/nore-red-esp32-project/node-red-flows/


The “Catch” node can detect exceptions anywhere in the flow.

In the original flow, I have added two nodes: a “catch” node
that monitors the flow for exceptions, and a “debug” node that
will display information about an exception after it is caught.

The “catch” node is titled “Catch all errors”.

The “debug” node is titled “Errors”.

In the original flow “test” function, I have introduced an error.
You should be able to see this error below:

Extracted from https://techexplorations.com 
Page 64

https://techexplorations.com/guides/esp32/nore-red-esp32-project/node-red-messages-variables/


Ooops… I’ve made a typo. Can you find it?

The “catch” node only has two configuration options:

catch errors from all nodes
catch errors from selected nodes

When an error is caught, the “catch” node will store relevant
information inside the msg object in the form of attached
attributes:

error.message
error.source.id
error.source.type
error.source.name

You can see these options in the node’s edit pane, and in the
node information (documentation). I have included both of
these in the screenshot below:

Extracted from https://techexplorations.com 
Page 65



“catch” node configuration and output.

To display information about the error that I planted in the
function node, we can use a debug node, configured like this:

Extracted from https://techexplorations.com 
Page 66



Display the contents of msg.error.message

When I deploy the flow and click on the inject node button, the
function node will through an exception which is caught by the
“catch” node. The “catch” node will pass information about the
exception to the “debug” node which will show the error in the
console, like this:

Oops, there’s the bug.

Now that I know there there is a bug, I can fix it and re-deploy
the flow.

All good!

It’s good practice to keep a “catch” node in your flows just in
case the JavaScript in the function nodes contain typos or
errors that, otherwise, will not be reported.

Extracted from https://techexplorations.com 
Page 67



9. The linkout and linkin nodes

Node-RED guide series

Node-RED, the “link out”
and “link in” nodes
With the “link in” and “link out” nodes, you can connect and 
exchange data between nodes that belong to different flows.

You already know how to exchange data between nodes that
belong to different flows using global variables. The “link out”
and “link in” nodes provide you with an alternative method to
do the same. These nodes are easy to set up, and especially
useful if you simply want to share data from one node directly
to another.

You will find the “link in” and “link out” nodes in the common
group of the left toolbar.

Extracted from https://techexplorations.com 
Page 68

https://techexplorations.com/guides/esp32/nore-red-esp32-project/node-red-messages-variables/


The “link out” and “link in” nodes.

Setup the “link out” and “link in” nodes
To demonstrate how “link out” and “link in” works, we’ll use
the familiar flow from the previous few articles as our basis.

Here’s a slightly modified version of the flow. Notice that I
have added a new output in the function node, which I have
connected to a link “out node”.

Extracted from https://techexplorations.com 
Page 69



This flow contains a “link out” node.

I have made a small change to the “function” node: I have
added a fourth output and adjusted the JavaScript so that a
string of text is send to the new output.

The fourth output is connected to a “link out” node.

Extracted from https://techexplorations.com 
Page 70



Don’t worry about configuring the “link out” node yet; it’s best
to do this after you have added the “link in” node.

Create a new flow, and create a simple flow with a “link in”
and “debug” nodes, like this:

This flow contains a “link in” node.

Double-click on the “link in” node to see it’s properties.

In the “Name” field, type in “Link in 1” or something
reasonable. This name will appear in the “link out” properties
so that you can easily select the target of the “link out” node.
The properties for the “link in” node look like this:

The “link in” node properties.

Notice that the “link out” node is listed under the name field.

Extracted from https://techexplorations.com 
Page 71



Because our “link out” node does not have a name yet, Node-
RED is showing the node ID. When you assign a name to the
“link out” node, you will see the name in this list, instead of
the node ID.

Continue with the flow that contains the “link out” node.

Double-click on the “link out” node to see the properties pane,
and set its name to “Link out node 1” or anything else you
want. The “link out” properties will look like this:

The “link out” node properties.

You can see that the “link in 1” node is listed as a candidate
node to which you can link this node. Any other “link in” nodes
that you may have created across all flows will be listed here.

Select the “link in” node, and click on Done.

Before you deploy the changes, check on the name of the “link
out” node as it appears in the “link in” node. Instead of the
node ID, you now see the actual node name.

You can link “link out” and “link in” node from wither one.

Extracted from https://techexplorations.com 
Page 72



Deploy the changes and then click on the “inject” node’s
button.

You will see this message in the debug tab:

The output from “link in”.

Link-in and link-out provide an alternative way for data to be
shared among nodes that belong to different flows.

Extracted from https://techexplorations.com 
Page 73



10. The switch node
Node-RED guide series

Node-RED, the “switch”
node
The “switch” node allows your flow to execute one of several
possible paths depending on the rules you have specified.

The “switch” node is like the “if” statement in a text
programming language.

Like the “if” statement, you can use the “switch” node to
define one or more logical rules. According to the truthfulness
(or falseness”) of those rules, the “switch” node can be
configured to trigger one or more paths of execution.

You can find the “switch” node in the “function” group of the
left tool bar.

Extracted from https://techexplorations.com 
Page 74

https://en.wikipedia.org/wiki/Conditional_(computer_programming)#If%E2%80%93then(%E2%80%93else)


The “switch” node.

Setup the “switch” node
To explain how to use the “switch” node, I have create this
simple flow:

This flow contains a “switch” node.

The flow begins with an “inject” node which will emit a
numerical “6” when you click on the button.

Extracted from https://techexplorations.com 
Page 75



The payload will go into the switch node, which will evaluate it.
If the payload is larger than 5, then the top output will be
triggered. If the payload is equal or less than 5, then the
bottom output will be triggered.

Take a look inside the “switch” node:

The properties of the “switch” node.

I have marked the important fields of the edit pane with a box.

First, you must set the property to evaluate. In this case, I
have configure the node to get the value from the message
payload.

Next, you must define at least one rule to be evaluated. The
rule is defined by a boolean comparator, a value, and the
output that will be triggered if the rule is evaluated to be true.

Extracted from https://techexplorations.com 
Page 76



The available comparators are comprehensive:

The comparators available in the “switch” node.

The last field in the edit menu allows you to set the evaluation
mode. You can set the node to stop when it finds a true rule, or
to evaluate all rules.

Extracted from https://techexplorations.com 
Page 77



Go ahead and try out this example. Deploy the flow, and then
click on the “inject” node’s button. The output will be “6” from
node “>5”, as expected:

The output shows that the first rule of the “switch” node was
true.

The “switch” node will evaluate numerical “6” and continue
flow execution from the top output.

Extracted from https://techexplorations.com 
Page 78

https://wp.techexplorations.com/wp-content/uploads/2020/08/NodeRed-and-ESP32-project_-Make-a-Terrarium-controller-TechExplorations-SQUARE_320.png


11. The range node
Node-RED guide series

Node-RED, the “range”
node
The “range” node takes in a number, which belongs to a
particular scale range, and converts it to a new number that
belongs to a different range.

The range node works like the map function in the Arduino
programming language. It takes a number, which belongs to a
particular range, and it will re-map it into a new number in a
new range.

You will find the “range” node in the “function” group of the
left toolbar.

Extracted from https://techexplorations.com 
Page 79

https://www.arduino.cc/reference/en/language/functions/math/map/


The “range” node.

Setup the “range” node
To explain how to use the “range” node, I have create this
simple flow:

This flow contains a “range” node.

I am using an “inject” node to send a number to the “range”
node titled “scale input”.

Extracted from https://techexplorations.com 
Page 80



The “range” node takes the number from its input and re-
maps it.

Below you can see how I have configured the “range” node.

The input range is 0 to 1023, and the output range is 0 to 100:

The edit properties of the “range” node.

Let’s try out a couple of input values. There’s already “1023”
set in the “inject” node. Deploy the flow, and click on the
“inject” node button.

Look at the output in the debug pane. It should look like this:

The arrow shows the scaled value of the input number. 1023
becomes 100.

The input “1023” belongs to the range 0 to 1023. Remapping
this to the range of 0 to 100 yields “100”.

Extracted from https://techexplorations.com 
Page 81



Let’s try another input number: “500”.

Edit the “inject” node, redeploy and click on the button to start
the flow.

The result is below:

500 out of 1023 is remapped to 48.87 out of 100.

The remapped value of 500 out of 1023 is 48.875855… out of
100. If you don’t need all these decimals, you can round the
result to the nearest integer by selecting the appropriate
checkbox in the “range” node’s properties:

Extracted from https://techexplorations.com 
Page 82



Scale the mapped value to the nearest integer.

Re-deploy and click on the inject button. The result is easier to
read:

Extracted from https://techexplorations.com 
Page 83



The mapped number is rounded to the nearest integer.

The “range” node is very useful, especially when you work
with numbers exist within a specific range. For example, I’ll be
using this node in the terrarium project to scale the analog
input that comes from the ESP32 for the humidity of the soil
into a number from zero to 100 to represent humidity as a
percentage.

Extracted from https://techexplorations.com 
Page 84

https://wp.techexplorations.com/wp-content/uploads/2020/08/NodeRed-and-ESP32-project_-Make-a-Terrarium-controller-TechExplorations-SQUARE_320.png


12. The "delay" node
Node-RED guide series

Node-RED, the “delay”
node
The “delay” node does two things: (1) It allows you to delay a 
message by an arbitrary amount of time and (2) to limit the 
rate of messages that are passing through it.

In this article I will show you how to use the “delay” node to
introduce a delay in the propagation of a message through a
flow, and to limit the rate of messages coming through.

The rate-limiting function is very useful, for example, when
you want to connect your flow to an external resource on the
cloud. Typically, IoT resources impose a limit to how often you
can “hit” them. If your application exceeds this limit, your
account can be suspended, or at least made in-operable for an
amount of time. With the “delay” node, you can ensure that
your flow does not “hit” the IoT resource beyond a specific

Extracted from https://techexplorations.com 
Page 85



rate.

The “delay” node.

Setup the “delay” node
To explain how to use the “delay” node, I have create this
simple flow:

This flow contains a “delay” node.

Extracted from https://techexplorations.com 
Page 86



I am using an “inject” node to send a timestamp to two
“debug” nodes.

I’ll be doing two experiments with the delay node. For both,
the configuration of the inject node is the same, and it looks
like this:

The configuration of the “inject” node.

Experiment one: simple delay

In the first experiment, I want to use the “delay” node to hold
the incoming message for 5 seconds, and then pass it on to
the “debug” node.

To achieve that, I have set the “delay” node like this:

Extracted from https://techexplorations.com 
Page 87



The configuration of the “delay” node.

Deploy the flow, and click on the inject node button.

The first “debug” node will display the timestamp
immediately.

However the second “debug” node is fed by the delay node,
which holds the message for 5 seconds before it lets it
through.

The second “debug” node will display the message exactly 5
seconds after the first one, as you can see from the message
timestamps, marked by the yellow boxes:

Extracted from https://techexplorations.com 
Page 88



The two messages are exactly 5 seconds apart, even though
they were created at the same time

Experiment two: rate limiter

In the second experiment, I want to use the “delay” node as a
rate limiter.

The way that the flow works now, if you click on the “inject”
button repeatedly and as fast as you can, you will see a
timestamp for each click.

Very quickly, the debug pane will fill up with timestamps:

Extracted from https://techexplorations.com 
Page 89



Extracted from https://techexplorations.com 
Page 90



The debug pane is filled with timestamps.

To reduce the number of messages that get through to the
“debug” node to a small number, say one message per
second, I can configure the delay node like this:

The rate is limited to one message per 1 second.

Now, no matter how fast I can click on the “inject” node
button, only one message per second will appear in the debug
pane. All intermediate timestamps will be dropped.

The rate limiting capability of the “delay” node is something
use in the terrarium controller project. For example, I have
implemented a feature so that the gadget can notify me when
the MCU or pump voltage drops below a threshold. I don’t

Extracted from https://techexplorations.com 
Page 91



want to flood IFTTT (or my inbox) with such messages, so I
have used the rate limiter to only send me one message every
ten minutes.

Extracted from https://techexplorations.com 
Page 92

https://wp.techexplorations.com/wp-content/uploads/2020/08/NodeRed-and-ESP32-project_-Make-a-Terrarium-controller-TechExplorations-SQUARE_320.png
https://mpl-publisher.com/guides/esp32/nore-red-esp32-project/1-introduction-to-node-red/


13. The trigger node
Node-RED guide series

Node-RED, the “trigger”
node
With the “trigger” node, you can repeat a message at an
arbitrary period.

With the “trigger” node, you can repeat a message at an
arbitrary period.

You will find the “trigger” node in the functions group of the
left toolbar.

Extracted from https://techexplorations.com 
Page 93



The “trigger” node.

Setup the “trigger” node
To explain how to use the “trigger” node, I have created this
simple flow:

Extracted from https://techexplorations.com 
Page 94



This flow contains a “trigger” node.

When I click on the button of the “inject” node named “Start”,
the “trigger” node will send the string “tap…” to the “debug”
node, and will continue to do so every 1 second.

When I click on the button of the “inject” node named “Stop”,
the trigger node will reset and wait for the next message from
“Start”.

Here is the configuration of the Start node:

The Start “inject” node. Just sends out a text message.

This is the configuration of the “trigger” node:

Extracted from https://techexplorations.com 
Page 95



The configuration of the “trigger” node.

There’s a few options available. I have set this “trigger” node
to propagate whichever message object it receives in its input,
and to resend it every one second.

Notice that there is an option to reset the trigger by sending a
msg.reset (the content of the reset attribute is not important),
or by setting a specific value in the msg.payload attribute.

In this example flow, I use the msg.reset method. Here is the
configuration of the Stop node:

Extracted from https://techexplorations.com 
Page 96



The configuration of the Stop node.

In the Stop node configuration, notice that I have created the
“rest” attribute of the msg object, and set it to contain a
timestamp. It does not matter what you store in the reset
attribute. It can be a number, a string, a JSON object etc. The
actual content is ignored by the trigger node; what matter is
that the reset attribute exists.

In the terrarium project, among other things, I use a trigger
node to get a reading from the DHT22 sensor every 10
seconds.

Extracted from https://techexplorations.com 
Page 97



14. The RBE (Report by Exception) node
Node-RED guide series

Node-RED, the”rbe”
node
“RBE” stands for “Report by Exception”. This node will will only
pass changes to its output,.

Suppose that you are sending on/off instructions to a motor or
other actuator. The motor will turn on after it receives an “on”
instruction, and any subsequent “on” instructions will have no
effect.

In a Node-RED flow, this is case where you can use an “rbe”
node to only propagate changes in the content of a message.
With the “rbe” node, a message that is equal to the previous
message will not be propagated, while a different message
will.

With the motor example (which actually comes from the

Extracted from https://techexplorations.com 
Page 98



Terrarium controller project), the “rbe” flow will block new
“on” messages if the last message was also “on”, but will
propagate an “off” message.

You will find the “rbe” node in the functions group of the left
toolbar.

The “rbe” node.

Setup the “rbe” node
To explain how to use the “rbe” node, I have created this
simple flow:

Extracted from https://techexplorations.com 
Page 99



This flow contains an “rbe” node.

This flow is triggered by the two “inject” nodes on the left. The
“debug” node on the right will simply print out values “1” or
“2”, depending on which button was clicked.

Here’s the interesting part: The message that arrives to the
“debug” node is controlled by an “rbe” node. Only changes in
the message payload will go through.

So, If you click the inject node named “1” multiple times, the
output will show “1” only once.

You will get the same behavior by pressing inject node “2”
multiple times.

However, if you alternate your clicks between “1” and “2”, all
of the messages will be printed in the debug pane.

Here is how I have setup the “rbe” node

Extracted from https://techexplorations.com 
Page 100



The “rbe” node setup.

I have set the mode to “block unless value changes”, and the
value that is evaluated to “msg.payload”.

That’s all there is to it.

To test it, deploy the flow and click on the two “inject” node
buttons. Here is an example output:

Extracted from https://techexplorations.com 
Page 101



Notice that the messages alternate between “1” and “2” even

Extracted from https://techexplorations.com 
Page 102



though I was frantically clicking on the same button multiple
times.

The “rbe” node offers several mode options as you can see in
the screenshot below. You can qualify for the kind of change
that want to block or allow message propagation.

“rbe” node mode options.

Extracted from https://techexplorations.com 
Page 103


	0-1-introduction-to-node-red-examples-and-documentation
	1-2-install-node-red-on-the-raspberry-pi
	2-3-node-red-configuration
	3-4-node-red-nodes
	4-5-node-red-flows
	5-6-node-red-messages-and-variables
	6-7-the-amp8220completeamp8221-node
	7-8-the-amp8220catchamp8221-node
	8-9-the-amp8220linkoutamp8221-and-amp8220linkinamp8221-nodes
	9-10-the-switch-node
	10-11-the-range-node
	11-12-the-amp8220delayamp8221-node
	12-13-the-trigger-node
	13-14-the-rbe-report-by-exception-node
	Blank Page



