

Peter Dalmaris, PhD

ESP32 MicroPython

Get the most out of your
ESP32 with articles from
the Tech Explorations Blog

Extracted from https://techexplorations.com
Page 1

https://techexplorations.com

Welcome to this special collection of articles,
meticulously curated from the Tech Explorations blog
and guides. As a token of appreciation for joining our
email list, we offer these documents for you to
download at no cost. Our aim is to provide you with
valuable insights and knowledge in a convenient
format. You can read these PDFs on your device, or
print.

Please note that these PDFs are derived from our blog
posts and articles with limited editing. We prioritize
updating content and ensuring all links are functional,
striving to enhance quality continually. However, the
editing level does not match the comprehensive
standards applied to our Tech Explorations books and
courses.

We regularly update these documents to include the
latest content from our website, ensuring you have
access to fresh and relevant information.

Extracted from https://techexplorations.com
Page 2

License statement for the PDF documents on this
page

Permitted Use: This document is available for both educational
and commercial purposes, subject to the terms and conditions
outlined in this license statement.

Author and Ownership: The author of this work is Peter
Dalmaris, and the owner of the Intellectual Property is Tech
Explorations (https://techexplorations.com). All rights are
reserved.

Credit Requirement: Any use of this document, whether in part
or in full, for educational or commercial purposes, must include
clear and visible credit to Peter Dalmaris as the author and Tech
Explorations as the owner of the Intellectual Property. The credit
must be displayed in any copies, distributions, or derivative
works and must include a link to https://techexplorations.com.

Restrictions: This license does not grant permission to sell the
document or any of its parts without explicit written consent
from Peter Dalmaris and Tech Explorations. The document
must not be modified, altered, or used in a way that suggests
endorsement by the author or Tech Explorations without their
explicit written consent.

Liability: The document is provided "as is," without warranty of
any kind, express or implied. In no event shall the author or
Tech Explorations be liable for any claim, damages, or other
liability arising from the use of the document.

By using this document, you agree to abide by the terms of this
license. Failure to comply with these terms may result in legal
action and termination of the license granted herein.

Extracted from https://techexplorations.com
Page 3

1. Introduction to MicroPython with the
ESP32: What is MicroPython?
MICROPYTHON WITH THE ESP32 GUIDE SERIES

Introduction To
MicroPython With The
ESP32: What Is
MicroPython?
The Guides in this series are dedicated to MicroPython for the
ESP32. In this first lesson, I will introduce you to MicroPython,
its reason to exist, how it relates to Python, and its most
important characteristics.

Around mid-2014, Damien George published a new
programming language for microcontrollers, called
MicroPython. This publication was a successful completion of

an ambitious Kickstarter project that begun in 2013.

At the time, microcontroller programming was dominated by
the C language.

If you are familiar with the Arduino, you know what C looks
like. On a microcontroller like the Arduino, C is not very
difficult to learn, however things do get more complicated as
programs get bigger.

As microcontrollers started becoming more powerful, more
people started being interested in programming them. Many of
them were first-time programmers. This included people in all
age brackets.

Damien wanted to create a language that would work on
microcontrollers that would be much easier to learn and use
than C. He did not want to reinvent the wheel, so he chose
Python as his prototype.

His challenge was to create a language that can mimic Python
that can run on the bare metal of a microcontroller, without an
operating system.

So, he created MicroPython.

What is MicroPython?

https://www.kickstarter.com/projects/214379695/micro-python-python-for-microcontrollers

Here is a description of the language from the MicroPython
website (emphasis in bold is mine):

“MicroPython is a lean and efficient implementation of the
Python 3 programming language that includes a small subset
of the Python standard library and is optimised to run on
microcontrollers and in constrained environments.”

Python MicroPython

Because MicroPython contains the word “Python”, it is easy to
become confused and think that MicroPython is simply a

smaller version of Python.

It is the same confusion that I have seen in the past between
Java and Javascript.

While Python and MicroPython have a similar name, they are
totally different languages, with a different set of goals and
implementation.

I talk more about the differences between Python and
MicroPython in a later lecture. For now, I just want to make
sure that you are not confused by the similarity in the name.

Excellent for learning and using

What MicroPython has taken from Python is the language
architecture, its programming philosophy for code readability,
and a huge pool of programmers that already know how to use
Python.

Pythonistas can quickly become MicroPythonistas and write
programs for microcontrollers.

According to the “PYPL PopularitY of Programming Language
Index”, Python is the most popular programming language in

https://pypl.github.io/PYPL.html
https://pypl.github.io/PYPL.html

the world, with a 30% share. This index is calculated based on
the amount of searching is done on Google for programming
language tutorials or resources.

As a comparison, C/C++ used by the Arduino boards ranks 5th
place in this index.

This popularity translates to a Python universe that is filled
with all the documentation, libraries and community support
you will ever need.

MicroPython is as easy as Python to learn, and follows Python’s
tradition for excellent development tools and documentation.
In this course, you will see me constantly browsing through the
MicroPython core documentation, as well as many of the
excellent libraries we’ll be using.

In terms of tools, you have many choices. In this course, I’ll be
using Thonny. But, you can also choose tools such as upycraft,
and the Mu editor.

What I really like about Thonny is that is a full Python editor on
its own merit, with excellent debugging tools, but also fully
supports MicroPython on the ESP32 as well as other target
boards like the Raspberry Pi Pico and the BBC Microbit.

Another big advantage of MicroPython is that once you learn it,
you can use your skills across multiple hardware targets. At
the time I am recording this lecture, MicroPython has support
for the original Myboard v1 and D-series, as well as third-party
boards such as the STM32 Nucleo and Discovery boards, the
Espruino Pico, the Raspberry Pi Pico, the WiPy, the ESP8266
and ESP32, the TinyPico, and the BBC Micro:Bit.

This was just a partial list.

MicroPython features

https://dfrobot.gitbooks.io/upycraft/content/
https://codewith.mu/

Let’s take a quick tour of MicroPython’s most important
features.

Implements Python 3.4 language and
syntax
First and most important for anyone new to this language, is
that MicroPython aims to implement the Python 3.4 standard
for language and syntax.

This simply means that anyone who already programs in
Python 3.4 will be able to start programming in MicroPython
immediately. Python 3.4 reserved keywords, operators,
functions, even the infamous whitespace indentation is
faithfully implemented in MicroPython.

uPython standard library is a subset of
CPython standard library
Because MicroPython targets embedded computers and
microcontrollers, it is not possible to implement the full Python
standard library, with all of its modules and methods.

There’s simply not enough storage on the target devices.

Therefore, MicroPython implements a selected subset of
CPython’s standard library. Even that, is implemented with
emphasis in efficiency. MicroPython versions of Python
libraries have a name with the “u” letter prefix.

uPython has a REPL
MicroPython has an Interactive Interpreter mode, also known
as “REPL”. REPL stands for “Read-Eval-Print-Loop”. Think of it
as a command line for Python. You can use this command line
to issue Python instructions or even code blocks. The REPL will
evaluate this Python code immediately.

The MicroPython REPL is fully featured, with auto-indent, auto-
completion, ability to interrupt a running program with Ctrl-C
and invoke a soft reset.

There is also a paste mode, and you can use the special “_”
underscore variable that stores the output of the previous
computation. I this course, I’ll be using the REPL extensively to
demonstrate and test code.

Easy to install 3rd-party packages
Outside of the MicroPython standard library, there are
countless libraries contributed by users and published online
on repositories like Github and PyPI (the Python Package
Index).

Similar to CPython, MicroPython has a simple mechanism for
including external code to your programs. In this course, I’ll
show you how to find and use external libraries that make it
easy to integrate hardware components like screen and
sensors to your MicroPython projects.

Supports on-device filesystems
MicroPython has the ability to access a small filesystem on the
target miroctroller device. This filesystem makes it possible to

store your MicroPython programs, supporting library files, and
arbitrary files such as text files for storing sensor data or
credentials for networks and IoT services, or bitmap image
files.

In this course, I have prepared several examples where I
demonstrate how to use the file system on the ESP32.

Simple command-line tool
MicroPython has a single command-line Python tool that allows
you to run a script or access the filesystem on a target device.

This tool is called pyboard.py.

In this course, we will not be using this tool because Thonny
IDE has build-in support for MicroPython on a variety of target
devices, including the ESP32. However, I mention pyboard.py
here because it provides a simple way to interact with the
REPL, run programs, and upload or download files from the
device file system.

MicroPython on different devices

MicroPython works on many different microcontrollers.

http://docs.micropython.org/en/latest/reference/pyboard.py.html

The diversity of the hardware means that not all MicroPython
code will work across those devices without modifications.

In general, there are two points to remember in relation to
sharing MicroPython code across different targets.

uPython language and core libraries work
across different targets
Most of the code that uses MicroPython standard library
functions and the core of the language will work without
modifications.

Language syntax, reserved keywords, control structures, and
functions that come from standard libraries like math (for
mathematics), uos (for basic operating system services) and
utime (for time and date related functions), will work across all
MicroPython hardware targets.

Code that controls pins, interfaces needs
customisation
On the other hand, any functionality that is uniquely
implemented on a microcontroller requires a unique
implementation in MicroPython.

For example, the way that digital pin functionality is
implemented between the ESP32 and the Raspberry Pi Pico
differs.

It is it a similar case to how functions relating to network, the
I2C and SPI interfaces, and the analog to digital converters are
implemented across boards. These differences are reflected in
the MicroPython implementation for each board.

For this reason, in addition to the standard library, MicroPython
has libraries specifically implemented for each supported
board. You should take a bit of time to study your target

device special libraries so that you know what is available and
how you can go about taking advantage of the device
capabilities.

uPython may not access all hardware
features
One more thing: Not al device capabilities can be access
through MicroPython. For example, in the ESP32, there is no
MicroPython module for Bluetooth, although there is for Wifi.

MicroPython is readable

Let’s wrap up this lesson by going back to MicroPython’s most
important attribute.

MicroPython, like CPython, is designed to be readable. It
almost reads like natural language.

This is an example code segment from one of the lectures in
this course. Even if you have never seen MicroPython before,
and perhaps have never programmed before, you will be able
to make fairly accurate inferences about what this code is
supposed to do.

Yes, you do need to have a basic understanding of electronics.
Without that, keywords like “Pin.OUT” and “Pin.PULL_UP” will
not make sense.

However, the language barrier to entry for MicroPython is
minimal. Certainly, it is much lower than the barrier to entry
for a language like C or C++.

This is the number 1 reason why Python became so popular,
and why MicroPython has been gaining massive support in
popularity since the Kick-starter campaign in 2014.

Learn MicroPython for the ESP32
With this video course, you will learn how to use
theMicroPython programming language with the ESP32 micro-
controller.

MicroPython is the perfect language for anyone looking for the
easiest (yet still powerful) way to program a micro-controller.

__CONFIG_colors_palette__{“active_palette”:0,”config”:{“color
s”:{“3e1f8”:{“name”:”Main
Accent”,”parent”:-1}},”gradients”:[]},”palettes”:[{“name”:”D
efault Palette”,”value”:{“colors”:{“3e1f8”:{“val”:”rgb(217, 49,
33)”}},”gradients”:[]},”original”:{“colors”:{“3e1f8”:{“val”:”rg
b(19, 114,
211)”,”hsl”:{“h”:210,”s”:0.83,”l”:0.45}}},”gradients”:[]}}]}__
CONFIG_colors_palette__

https://mpl-publisher.com/guides/esp32/micropython-with-the-esp32/1-what-is-micropython/

2. MicroPython vs CPython
MICROPYTHON WITH THE ESP32 GUIDE SERIES

MicroPython Vs CPython
In this lesson, I will discuss some of the differences between
MicroPython and CPython that I believe are most important to
know when you are getting started with MicroPython.

As you know by now, MicroPython and CPython are two
different programming languages. MicroPython has copied
CPython as faithfully as possible to create a high-level
language programming experience for microcontrollers. There
are differences between the two languages, which I would like
to summarize in the next few minutes.

See the MicroPython documentation for detailed differences
between MicroPython and CPython

The differences between MicroPython and Python are
documented in detail on the MicroPython website. There, you
can find a complete list of those differences and code
examples that demonstrate them. In this lesson, I will discuss
some of the differences between MicroPython and CPython
that I believe are most important to know when you are
getting started with MicroPython.

Syntax

Let’s begin with syntax.

In CPython, you can do things like forget to put a space
between a literal number and a keyword to form an
expression, and that will be okay. CPython has enough
flexibility to forgive mistakes like this. The same error in
MicroPython, however, will generate a syntax error.
MicroPython developers had to throw away the logic needed to
deal with typos like that to fit the limited storage of the target
devices.

Functions and “self”

Another example of these differences between the two
languages is how the “self” keyword is handled. When self is
used in a function in CPython, it does not count as an
additional argument, but MicroPython does. As a result, if you
provide an incorrect number of arguments to a function that
contains the self keyword, then the error message it will get in
CPython will be different from what you’ll get in MicroPython.

I’ve got an example here.

As you can see in this example, I’m calling the same function
calculator in CPython and Python and I’m passing a single

argument. I should have passed two arguments, but I made a
mistake. I just passed a single argument here. As you can see,
I’m calling the same function with the same parameter. But
the messages that are coming back to indicate the error are
different. CPython is telling me that I’ve got one required
argument missing. Where uPython is telling me that in total,
there are supposed to be three arguments. I’ve only given two
when, in fact, I’ve given one.

You can see that the message there is coming through here in
MicroPython is or can be a bit confusing, which can throw you
off and cause you to rely on your program’s debugging. But as
long as you are aware of the situation with the self keyword, I
think you’ll be able to get past issues like this.

Number formatting

Here’s another subtle difference that has to do with formatting
in this particular example of a floating-point number.

When you print out formatted floating-point numbers, the
result may differ between MicroPython and CPython. Here, I’m
printing out this floating number, using the same commands
between CPython and C Python – UPython being MicroPython.
And as you can see that what comes out is different on each

occasion. In this case, when used with CPython, the “g”
operator applies the exponential format to a number. In the
output, the “g” operator differs between the two
implementations.

Strings

Following is an example of differences relating to the string. As
you may know, CPython contains powerful string manipulation
functions, and not all of them are available on MicroPython.
Two examples: “start with” and “end with”. These allow you to
check if a string starts or ends with a specific character or
string of characters.

In MicroPython, these functions only work in their basic format
without the start and end index parameters. In the example
here in this slide, you can see that the call to the end with
function fails when we use it with the three parameters but
work with a single parameter. In CPython, no problem. Either
one will work correctly and as expected.

JSON

Next up, we’ve got JSON.

In this guide and course, we’ll use the MicroPython JSON
module to work with Internet of Things services. Unlike
CPython and the CPython version of the JSON module, uJSON
does not throw an exception if an object is not serializable.

And this means that if your program receives a JSON document
from a web service that is not valid, you will not be able to
deal with it gracefully using an exception handler. You will
have to deal with this manually, or your program will crash.

Conclusion
All right, so these were just some of the subtle differences
between CPython and the MicroPython implementation. And,
of course, there are many more. Again, the best place to learn
about them and keep track of the changes is the MicroPython
documentation.

In the following lesson, I’ll show you some of the best online
resources for MicroPython. And these are the resources that
you’ll want to bookmark so that you can access them easily
any time you work with MicroPython.

Learn MicroPython for the ESP32
With this video course, you will learn how to use
theMicroPython programming language with the ESP32 micro-
controller.

MicroPython is the perfect language for anyone looking for the
easiest (yet still powerful) way to program a micro-controller.

__CONFIG_colors_palette__{“active_palette”:0,”config”:{“color
s”:{“3e1f8”:{“name”:”Main
Accent”,”parent”:-1}},”gradients”:[]},”palettes”:[{“name”:”D
efault Palette”,”value”:{“colors”:{“3e1f8”:{“val”:”rgb(217, 49,
33)”}},”gradients”:[]},”original”:{“colors”:{“3e1f8”:{“val”:”rg
b(19, 114,
211)”,”hsl”:{“h”:210,”s”:0.83,”l”:0.45}}},”gradients”:[]}}]}__
CONFIG_colors_palette__

https://mpl-publisher.com/guides/esp32/micropython-with-the-esp32/1-what-is-micropython/

3. MicroPython Resources
MICROPYTHON WITH THE ESP32 GUIDE SERIES

MicroPython Resources
In this lesson, I will discuss MicroPython Resources that will
save you time and help you to learn faster.

MicroPython is relatively new. Nevertheless, continuing that
tradition set by Python is very well documented. In this lecture,
I’ll show you some of the best online, free, and community-
supported resources that I use. I guarantee that these
resources will save you time and help you take your first steps
with MicroPython.

MicroPython.org

MicroPython.org is the home of the MicroPython language on
the web; this is where you can find MicroPython firmware for
the supported boards, links to the documentation, a discussion
forum, and a store from where you can purchase “Pi” boards. I
have prepared a separate lesson where I discuss supported
hardware, so hold on to any hardware-related questions for
now.

MicroPython documentation

In this course, we’ll spend a lot of time browsing the
documentation, and I’ll talk about that shortly. I encourage you

to sign up for an account for the MicroPython forum, where
you can participate in relevant discussions. The forums,
including the one dedicated to the ESP32, are very busy with
multiple new discussion threads almost daily.

We’ll be spending a lot of time browsing through the
MicroPython documentation. The documentation website is
hosted under docs.micropython.org. It contains details about
the MicroPython libraries, the language, and implementation.
In almost every case, the documentation provides a detailed
definition of every function and class and simple examples of
how to use it. The documentation covers the Python standard
libraries and MicroPython specific libraries and libraries
specific to the “Pi” board, WiPy, ESP8266, and ESP32 boards.

MicroPython language reference

The MicroPython documentation focuses on topics specific to
MicroPython. Because the MicroPython syntax, language, and
programming philosophy comes from Python, you’ll need to
refer to the Python documentation from time to time.

For example, if you don’t remember how to initialize a table,
you can quickly look it up in the Python Documentation. You’ll
find this at docs.python.org/3 and then click on the Language

https://forum.micropython.org/
https://docs.micropython.org/en/latest/index.html
https://docs.python.org/3/
https://docs.python.org/3/reference/index.html

Reference link.

Python Package Index

MicroPython, as with Python, has a substantial library of
packages created by its community of programmers.

A repository where you can find many of those packages is the
Python Package Index at pypi.org. The Python Package Index
contains packages designed for CPython and MicroPython.

You need to be a little careful when you search. Often
packages written in MicroPython indicate that in the title.

For example, You can find a MicroPython package for the
DHT12 sensor by searching for MicroPython DHT12 to
distinguish it from other packages written for different
platforms. One of them is PI GPIO, a Python package that
works on the Raspberry Pi computer.

Of course, even when you find a package that explicitly
indicates it is written for MicroPython, you need to check that
it supports your hardware target. Not all of them do.

https://docs.python.org/3/reference/index.html
https://pypi.org/

Awesome MicroPython

Awesome-MicroPython is a curated list of libraries for
MicroPython specifically, that’s unlike the Python Package
Index.

In most cases, when I’m hunting for a MicroPython library, I go
to Awesome MicroPython first. The curated list contains
libraries grouped according to their purpose. You’ll find
libraries for Ethernet and MQTT communications, displays like
E-Paper and LCD; there’s GPIO and input/output libraries, all
kinds of sensors, schedulers, storage, and much more.

But as with the Python Package Index, once you find a library
that looks promising, you need to take a closer look and
ensure that it will work with your microcontroller of choice.
This information is not always readily available in the library’s
documentation. In many cases, you’ll have to download the
library and test it on your device to make sure that it’s
compatible with it.

Learn MicroPython for the ESP32
With this video course, you will learn how to use
theMicroPython programming language with the ESP32 micro-

https://awesome-micropython.com/

controller.

MicroPython is the perfect language for anyone looking for the
easiest (yet still powerful) way to program a micro-controller.

__CONFIG_colors_palette__{“active_palette”:0,”config”:{“color
s”:{“3e1f8”:{“name”:”Main
Accent”,”parent”:-1}},”gradients”:[]},”palettes”:[{“name”:”D
efault Palette”,”value”:{“colors”:{“3e1f8”:{“val”:”rgb(217, 49,
33)”}},”gradients”:[]},”original”:{“colors”:{“3e1f8”:{“val”:”rg
b(19, 114,
211)”,”hsl”:{“h”:210,”s”:0.83,”l”:0.45}}},”gradients”:[]}}]}__
CONFIG_colors_palette__

https://mpl-publisher.com/guides/esp32/micropython-with-the-esp32/1-what-is-micropython/

4. MicroPython compatible boards
MICROPYTHON WITH THE ESP32 GUIDE SERIES

MicroPython Compatible
Boards
In this lesson, I will discuss some of the microcontroller boards
that are compatible with MicroPython. As you’ll see, there’s a
huge variety to choose from.

When MicroPython was first published in 2014, only one board
supported it, the original pyboard. A few years later, there’s
MicroPython support for a wide range of microcontrollers,
including the ESP32, which is the one that we’ll be using in this
course.In this lesson, we’ll take a closer look at the boards that
can use MicroPython.

pyboard

Let’s start with the original pyboard. The pyboard 1 is the
board that Damien George designed to run MicroPython for his
Kickstarter project in 2014. The pyboard contains an STM32
microcontroller chip, which is based on an Cortex-M4CPU. It
has 1024 kilobytes of flash ROM and 192 kilobytes of RAM. It
also features a micro SD card slot for an expanded file system,
and accelerometer, real time clock, four programable LEDS, 29
GPIOs, and two digital to analog converters among other
things.

The new D-series pyboard also uses an STM32 microcontroller,
but has a deep style form factor that makes it easier to
integrate into projects. Got more flash and RAM capability for
external flash, as well as Wi-Fi and Bluetooth connectivity, and
improvements across the board. The pyboard is the golden
standard for what a MicroPython device looks like.

ESP32 and ESP8266

https://pyboard.org/
https://pybd.io/hw/pybd_sfxw.html

Then, of course, we have the Espressif, ESP, family of devices,
the ESP32 and the older ESP8266 are almost fully supported
by MicroPython. You have learned about the lack of Bluetooth
support, for example, for the ESP32 in the previous lecture.
The ESP32 specific libraries are documented on the main
MicroPython documentation website.

Next to the pyboard, the ESP32 and ESP8266 seem to have
the widest range of community contributed Micropython
libraries. This means that there is a good chance that you’ll be
able to find a device driver for your favorite display or sensor.
At the time I’m writing this, a Bluetooth is not supported and
this is because of how much memory this implementation
would require. Wi-Fi, however, as you probably already know,
is fully functional.

So, apart from Bluetooth, almost all of the end user features
on the ESP32 can be used in MicroPython, timers, GPIOs, PWM,
Wi-Fi, I2C, SPI, sleep, analog to digital converters, all of those
work. It’s even possible to read the internal whole temperature
sensors.

The ESP32 is the microcontroller that I’ve chosen to use in this
course because of the excellent MicroPython implementation,
the richness of its hardware, and my familiarity with it from
previous projects.

https://www.espressif.com/
https://en.wikipedia.org/wiki/ESP32
https://en.wikipedia.org/wiki/ESP8266

Raspberry Pi Pico

Now, let’s have a look at the Raspberry Pi Pico. The Raspberry
Pi Pico was released earlier in 2021 selling for around $5. And
it’s powered by the brand new RP2040 microcontroller. This
microcontroller was designed by the Raspberry Pi Foundation.
And very quickly, several new boards came out that are based
on the same microcontroller, like the Feather 2040, the Tiny
2040. All of them can run the MicroPython firmware. And the
Raspberry Pi Foundation provides excellent documentation
through its website.

I find that compared to the pyboard and the ESP boards, it is
much harder to find MicroPython device drivers for the
Raspberry Pi Pico. It’s still a new board, so I expect that this is
going to change.

The Raspberry Pi Pico is an excellent, simple board. It doesn’t
have any wireless communications capability, but I think that
this is a case where simplicity is an advantage. Along with the
BBC micro:bit, the Raspberry Pi Pico is probably the easiest
way to learn MicroPython.

https://www.raspberrypi.org/products/raspberry-pi-pico/

BBC Micro:bit

Next up, the BBC micro:bit. So, the BBC micro:bit is a small
board designed specifically for education.

It uses a Nordic nRF52833 application processor. And it
contains an impressive array of built-in peripherals, such as an
LED matrix display, a touch sensor, a microphone, a couple of
buttons, and an accelerometer.

It also has a 2.4 gigahertz transceiver that students can
experiment with and create a simple radio communications
protocol and get microbits to talk to each other wirelessly.

The MicroPython implementation on the micro:bit is excellent
as expected. I’ve tested many of its hardware components and
everything seems to be working, even the radio
communications.

STM32 boards

https://microbit.org/

Next up, we’ve got the STM32 boards.

The Texas Instruments’ Nucleo and Discovery boards and the
Espruino Pico are based on the microcontrollers from the same
STM32 family. I remind you that the pyboard also uses an
STM32 microcontroller unit.

There are several Nucleo and Discovery boards geared
towards rapid prototype development for engineers, but are
also used in education. The Espruino Pico is a particularly
popular board among makers because of how much power is
packed in such a tiny board.

On the MicroPython website, it’s mentioned that the STM32
line of microcontrollers from STM Microelectronics are officially
supported by MicroPython via the STM32Cube HAL libraries.
The STM32 port of MicroPython contains the source code for
these MCUs.

This was just a short list of some examples of the boards that
can work with MicroPython. In this course, we’ll experiment
with the ESP32, as you know.

https://stm32-base.org/boards/
https://www.espruino.com/Pico

Learn MicroPython for the ESP32
With this video course, you will learn how to use
theMicroPython programming language with the ESP32 micro-
controller.

MicroPython is the perfect language for anyone looking for the
easiest (yet still powerful) way to program a micro-controller.

__CONFIG_colors_palette__{“active_palette”:0,”config”:{“color
s”:{“3e1f8”:{“name”:”Main
Accent”,”parent”:-1}},”gradients”:[]},”palettes”:[{“name”:”D
efault Palette”,”value”:{“colors”:{“3e1f8”:{“val”:”rgb(217, 49,
33)”}},”gradients”:[]},”original”:{“colors”:{“3e1f8”:{“val”:”rg
b(19, 114,
211)”,”hsl”:{“h”:210,”s”:0.83,”l”:0.45}}},”gradients”:[]}}]}__
CONFIG_colors_palette__

https://mpl-publisher.com/guides/esp32/micropython-with-the-esp32/1-what-is-micropython/

5. Getting started with Thonny IDE
MICROPYTHON WITH THE ESP32 GUIDE SERIES

Getting Started With The
Thonny IDE
In this lesson, I will discuss the Thonny IDE, an open-source
integrated development environment that we’ll be using to
program the ESP32 using MicroPython.

In this lesson I will show you around Thonny in my already set
up instance, and show you the location where you can
download the installation utility so that you can install it on
your own computer.

To get the most out of this lesson, I recommend that you
watch the video (see above).

https://thonny.org/

Thonny IDE walkaround

Thonny IDE running on Mac OS

In the screenshot above you can see Thonny IDE running on
Mac OS. I’ve done a little bit of configuration to customize the
font types, and sizes, and things like that.

But, essentially, what you see here is Thonny as it looks like as
soon as you install it.

Thonny is a competent and configurable integrated
development environment. It would look like this at its most
basic view, where you get the upper part of the window where
you can see one or more tabs. You can have multiple tabs with
your various Python programs or components for the program.
And then, down below, you’ve got the Shell that you can use
to interact with the Python interpreter.

In this case, as you can see, I’m running MicroPython on my
ESP32, which is connected. Don’t worry about this for now. I
will show you first how to install the necessary interpreter on
your ESP32 in the following lesson. And then, show you how to
make the connections and interact with MicroPython on the
ESP32.

For now, all I want to show you is that the Shell allows me real-
time interaction with the Python interpreter running on the
ESP32. But apart from that, it’s got many more capabilities.

Thonny IDE works with multiple interpreters.

For example, if I go into Tools and Options, I can change the
interpreter from MicroPython to one of the other available
interpreters. For example, this one here is Python that ships
with Thonny. Or you can go for Python that is running on a
virtual environment or with Python running somewhere else.
You may also access interpreters via a network, via SSH.

A list of interpreters that ship with Thonny IDE version 3.3.4 or
later.

You can see here that the Thonny (version 3.3.4- latest at the
time of recording) instance that I’m running ships with the
capability of running MicroPython on BBC Micro:bit, Raspberry
Pi Pico, ESP32, and the ESP8266; this is also a circuit Python
environment. So, it’s already fully featured just out of the box.

But you can install a lot more Python targets, as you can see,
via plugins.

Thonny and Python interpreters
Another thing that I want to show you is that Thonny is used,
not just for MicroPython on a microcontroller device, but for
general Python development. And it gives you a lot of tools
here, as you can see, to help you with that.

For example, you can turn on the files view, which gives you
access to all files in a particular location on your local file
system. In this case, it’s on My Computer. It also gives you a
view of the files that exist on the target device file system like
these, so these files are stored on the ESP32 itself.

The file browser allows you to access files in the host computer
and target device.

There’s also a series of other types of tools, such as the ability
to inspect the heap memory contents or, let’s, say the stack,

which is useful when you are jumping from one function into
another, keep track of which function you are in. I’m going to
give you a little demonstration of this a little later in another
section. You can check out the variables that have been set up
and so on.

Thonny IDE provides many development tools, such as the
variables, heap and stack inspectors.

Thonny IDE, important features
Let’s have a look at some of the most important features of
Thonny. First of all, you’ve got the configuration window. You
can access it from Preferences, but you can access the exact
same thing by going to Tools and Options. And that allows you
to customize the look and feel of Thonny, which forms you’re
using, et cetera, how the debugger works, which terminal to
use or Shell, and so on. So, you can customize the way that
your Thonny editor works this way.

Thonny options.

This also, if we go into Tools and Plugins, there’s a whole
variety of plugins that you can install; some of them, as I said
earlier, in version 3.3.4, comes built into Thonny itself. The ESP
tool package allows the Thonny IDE to interact with the ESP32
and, for example, flash new firmware on it.

But there are others you can search on PyPI, which is the
Python repository for packages, and see what else is available.
I’m going to show you how to use that later. There’s also a
package manager like this, which also allows you to search in
PyPI for Python packages that contain libraries or code that is
shareable and that you can use. Again, I’m going to show you
a little later how to install a PyPI package.

Get Thonny
To get Thonny, go to the Thonny website. You can have a
quick look at this to get a rundown of the most important
features.

I highly recommend that you watch this video here. It’s a
demonstration of some of Thonny’s most exciting features,
especially the debugging features produced by one of the
Thonny developers. So, do check it out.

To download Thonny, click on your operating system – in my
case, I’m working on a Mac – download the file, double click on
it, and install it. There’s nothing special about it. It’s
straightforward.

Download Thonny from thonny.org.

https://pypi.org/
https://thonny.org/
https://www.youtube.com/watch?v=nwIgxrXP-X4
https://thonny.org/

Thonny Github repository
Another web resource I want to show you is the GitHub
repository. So, you can see, as I said, the source code of the
Thonny project. Now, here you will find additional releases. So,
click on the Releases link, and it will take you to a page where
you can access not just the latest release, 3.3.4, in my case.
3.3.5 is just being worked on at the moment. It’s not available
via the download button here. You can see this is still 3.3.4.
The bleeding edge version is 3.3.5.

The Thonny GitHub repository.

But I found on the Mac in particular; if you are using macOS
Big Sur, which is macOS 11, then version 3.3.4 does not work
correctly. You may need to go to an older version; let’s say,
3.3.3 did work for me. So, in case you need an older version,
this is where you can get it from.

Learn MicroPython for the ESP32
With this video course, you will learn how to use
theMicroPython programming language with the ESP32 micro-
controller.

MicroPython is the perfect language for anyone looking for the
easiest (yet still powerful) way to program a micro-controller.

https://github.com/thonny/thonny/
https://github.com/thonny/thonny/

__CONFIG_colors_palette__{“active_palette”:0,”config”:{“color
s”:{“3e1f8”:{“name”:”Main
Accent”,”parent”:-1}},”gradients”:[]},”palettes”:[{“name”:”D
efault Palette”,”value”:{“colors”:{“3e1f8”:{“val”:”rgb(217, 49,
33)”}},”gradients”:[]},”original”:{“colors”:{“3e1f8”:{“val”:”rg
b(19, 114,
211)”,”hsl”:{“h”:210,”s”:0.83,”l”:0.45}}},”gradients”:[]}}]}__
CONFIG_colors_palette__

https://mpl-publisher.com/guides/esp32/micropython-with-the-esp32/1-what-is-micropython/

7. Set the Python interpreter
MICROPYTHON WITH THE ESP32 GUIDE SERIES

How To Set The
MicroPython Interpreter
Thonny IDE can work with multiple Python interpreters. Not at
the same time, of course, but Thonny does give you the ability
to select which interpreter you want to use next, also which
device that interpreter is installed on.

In this lesson I will show you how you can switch between
interpreters quickly.

The interpreter selector

The interpreter selector is in the Thonny options window.

Let’s start.

Go to Tools and then Options, you’ll see that under the
interpreter tab, expand that drop-down menu, and you’ll see
that Thonny comes equipped with a variety of interpreters.
There’s an interpreter that ships with Thonny itself. It runs as
part of the Thonny environment, but you can also choose to
use the Python instance installed on your computer.

Of course, you can run MicroPython on various devices,
including BBC micro:bit, Raspberry Pi Pico, and the ESP32.

I have already selected the ESP32 since we installed the
MicroPython firmware on my brand new device, and we tested
it.

The MicroPython prompt confirms your selected interpreter.

So, we’ve got the MicroPython prompt; this is information
about the Python interpreter we are using. So, if I do a simple
calculation in Python, like:

>>> 1 + 12>>>

… you will see that MicroPython on the ESP32 is working, and
communicating with Thonny IDE.

Switch to a different interpreter
From here, I want to switch to the Thonny built-in
environment.

You can do that via the Thonny options; click the Interpeter
tab, and select “The same interpreter which runs Thonny”
option from the list.

Switching to the Thonny IDE build-in Python interpreter.

You’ll get a new prompt where you can type in the same
simple calculation as before. The result, of course, is the same.

Just switched to default Python.

As you can see, the name of this environment they’re working
on right now is Python 3.7.9, which is the default Python for
Thonny IDE, not MicroPython.

MicroPython for the Raspbery Pi Pico
But how about something else? How about we try MicroPython
on the new Raspberry Pi Pico?

The Raspberry Pi Pico

In the photo above you can see a Raspberry Pi Pico
microcontroller that runs MicroPython. On the breadboard I
have added an LED here, which is just showing me when
power is connected.

Let’s see if we can program this board with MicroPython on
Thonny IDE.

Thonny IDE supports the Raspberry Pi Pico “out of the box”.

We’ll go to Tools, Options, select the Raspberry Pi Pico. There’s
support for the Pico.

MicroPython on Raspberry Pi Pico.

After selecting the interpreter for MicroPython on a Raspberry
Pi Pico, the REPL prompt becomes available so we can start
our interaction with it.

I’ve have created several lectures in this course where I
demonstrate how to use MicroPython on the Raspberry Pi Pico
in depth. I didd the same with the BBC Micro:bit.

Learn MicroPython for the ESP32
With this video course, you will learn how to use
theMicroPython programming language with the ESP32 micro-
controller.

MicroPython is the perfect language for anyone looking for the
easiest (yet still powerful) way to program a micro-controller.

__CONFIG_colors_palette__{“active_palette”:0,”config”:{“color
s”:{“3e1f8”:{“name”:”Main
Accent”,”parent”:-1}},”gradients”:[]},”palettes”:[{“name”:”D
efault Palette”,”value”:{“colors”:{“3e1f8”:{“val”:”rgb(217, 49,
33)”}},”gradients”:[]},”original”:{“colors”:{“3e1f8”:{“val”:”rg
b(19, 114,
211)”,”hsl”:{“h”:210,”s”:0.83,”l”:0.45}}},”gradients”:[]}}]}__
CONFIG_colors_palette__

https://mpl-publisher.com/guides/esp32/micropython-with-the-esp32/1-what-is-micropython/

6. Install MicroPython on the ESP32
MICROPYTHON WITH THE ESP32 GUIDE SERIES

Install MicroPython On
The ESP32
A new ESP32 board does not (normally) come with the
MicroPython firmware installed. Before you can use it, you’ll
need to install the MicroPython firmware. In this lesson I’ll
show you how to do it.

At this point, you should already have installed Thorney IDE on
your computer. If you haven’t done so, you should do it now.

A brand new ESP32 does not normally come with the
MicroPython firmware pre-installed. Before you can actually

https://techexplorations.com/guides/esp32/micropython-with-the-esp32/5-getting-started-with-thonny-ide/

start working with MicroPython on this microcontroller is to
install the MicroPython firmware.

Installing the MicroPython firmware
To install the MicroPython firmware to an ESP32, you need two
things:

First, you need to download the firmware for the particular
device from the Micro Python website.

And second, is to use a appropriate tool to upload the firmware
binary file to your ESP32.

Luckily, the newer versions of the Thonny IDE come equiped
with the upload tool.

Download the MicroPython firmware
To download the firmware for the ESP32, go to download page
on the MicroPython website. Beware, there is a specific
firmware file for each supported target board. You can’t upload
a Micro:bit firmware to an ESP32.

https://micropython.org/download/esp32/

Download the MicroPython firmware for the ESP32 from
micropython.org

Once at the download page, find the list with the ESP-IDF v4.x
downloads, and select the latest stable firmware. At the time I
am writing this, the latest version is 1.14.

Opt for a stable firmware, unless you know what you are
doing.

There are unstable versions and there are also versions for
ESP32 with the additional SPI RAM chip, which provides
additional memory. I don’t have that, so I’m going to go with
the latest generic version.

Download the file, and continue with Thonny.

Flash the MicroPython firmware to the
ESP32
Connect your ESP32 to your computer, then in Thonny select
Tools, Options to bring up the Options dialog box.

Click on the Interpreter tab. There are two drop-down menus
here.

The firmware upload tool in Thonny IDE.

The top one is the interpreter selector. Select the “MicroPython
(ESP32)” from the list.

The second is the port selector. Select the port to which your
ESP32 is connected.

Finally, click on the “install or update” hyperlink.

Select the firmware file to flash to your ESP32.

This will take you to the ESP32 firmware installer box. Again,
you will need to select the appropriate communications port.

Then, browse for the firmware file that you downloaded earlier.

There are a few options for the installer, which I recommend
that you leave in their default states (see my screenshot
above).

Finally, click on the Install button to start the flashing process.
The process takes around one minute to complete.

Test your new MicroPython interpreter
Once the flashing is complete, your ESP32 MicroPython
interpreter will connect to Thonny, and the REPL prompt will
appear.

The REPL prompt from the brand-new MicroPython interpreter
on the ESP32.

Type “help()” to see helpful information from the interpreter.

And with this, your ESP32 board can now work with
MicroPython.

Learn MicroPython for the ESP32
With this video course, you will learn how to use
theMicroPython programming language with the ESP32 micro-
controller.

MicroPython is the perfect language for anyone looking for the
easiest (yet still powerful) way to program a micro-controller.

__CONFIG_colors_palette__{“active_palette”:0,”config”:{“color
s”:{“3e1f8”:{“name”:”Main
Accent”,”parent”:-1}},”gradients”:[]},”palettes”:[{“name”:”D
efault Palette”,”value”:{“colors”:{“3e1f8”:{“val”:”rgb(217, 49,
33)”}},”gradients”:[]},”original”:{“colors”:{“3e1f8”:{“val”:”rg
b(19, 114,
211)”,”hsl”:{“h”:210,”s”:0.83,”l”:0.45}}},”gradients”:[]}}]}__
CONFIG_colors_palette__

https://mpl-publisher.com/guides/esp32/micropython-with-the-esp32/1-what-is-micropython/

8. How to write and execute a MicroPython
program
MicroPython with the ESP32 guide series

How to write and
execute a MicroPython
program
In this lesson, I will show you how to write and execute a
simple MicroPython program. I’ll do this with Thonny IDE in two
different ways.

I’ll show you how to run a simple MicroPython program that
prints “Hello World from MicroPython.” in the shell.

First, I’ll show you how to write the program in the REPL and in
a new file tab.

Next, I’ll show you how to load an existing file that contains a
MicroPython program from your computer’s file system.

Run a program on the REPL
First, start your Thonny IDE editor. Open the file browser tools
in the left side of the editor. Ensure that your ESP32 is
connected to your computer. Files stored on the ESP32 will
appear in the lower left side of the editor.

The main components of the Thonny editor.

If you have just flashed your ESP32 with the MicroPython
interpreter, you will only see the boot.py file in the
MicroPython device segment.

Let’s write a very simple program.

First, we’ll run the program on the Shell. Then, we’ll in which
we’ll store the same program so that we can run it in the
future without having to write it from scratch.

Here’s the program:

>>> print(“Hello World from MicroPython.”)

Hello World from MicroPython.

Simple, right?

When you type this program in the REPL and hit the Enter key,
the interpreter will execute it and show the response in the
shell.

The interpreter has just executed my one-line program.

Remember, this single-line program was executed on the
ESP32, not my host computer. When you type a command in
the REPL and hit the Enter key, the command is evaluated by
the REPL running on the target device immediately.

Run a program from a file
Another way to execute MicroPython programs, particularly
useful for programs that are more than a few lines in size, is,
of course, to store them in a file. So, I just copied my single
command, my very small program, into a file. The program
contains two lines. The first one is a commend, and starts with
the “#” symbol. The second line is the actual instruction that
prints out some text.

A tiny MicroPython program.

To save the program, click on the icon that looks like an old-
fashioned floppy disk.

To save a program, click on the floppy disk button and select
the target.

Thonny gives me a choice of where is it that I’d like to save
this program, either my computer or the MicroPython device.
In this instance, I’m going to go for the computer and that will

give me the option to store it somewhere. So, let’s say I’m
going to put it on this location and just say helloworld.py as
the file system and save that.

Note: regardless of where you save the file, execution will
always take place on the target device.

To run the program from the file, click on the green “play”
button.

Press “play” to run a program.

There are few nuisances in this system that we are going to
explore a little later. Those nuisances have to do with
dependencies.

For example, what if there is a module that is required by this
program which is not stored on the MicroPython device? Then,
you’re not going to just be able to upload and execute this file
on the device. You will also need to take care of those
dependencies.

And there are a few examples later on in this course where I
show you how that works.

All right. Obviously, we’re going to do a lot more into how to
write and execute programs on the ESP32 using MicroPython.
But in this quick introduction, I just want to show you the
simplest possible way of doing that.

Learn MicroPython for the ESP32
With this video course, you will learn how to use
theMicroPython programming language with the ESP32 micro-
controller.

MicroPython is the perfect language for anyone looking for the
easiest (yet still powerful) way to program a micro-controller.

__CONFIG_colors_palette__{“active_palette”:0,”config”:{“color
s”:{“3e1f8”:{“name”:”Main
Accent”,”parent”:-1}},”gradients”:[]},”palettes”:[{“name”:”D
efault Palette”,”value”:{“colors”:{“3e1f8”:{“val”:”rgb(217, 49,
33)”}},”gradients”:[]},”original”:{“colors”:{“3e1f8”:{“val”:”rg
b(19, 114,
211)”,”hsl”:{“h”:210,”s”:0.83,”l”:0.45}}},”gradients”:[]}}]}__
CONFIG_colors_palette__

https://mpl-publisher.com/guides/esp32/micropython-with-the-esp32/1-what-is-micropython/

10. Thonny IDE with BBC micro:bit
MICROPYTHON WITH THE ESP32 GUIDE SERIES

Thonny IDE With BBC
Micro:bit
In this lesson, I’ll show you how to run a simple MicroPython
program on the BBC micro:bit that scrolls text on the device’s
5 by 5 bitmap display.

Of course, we’ll do that using MicroPython and Thonny IDE.In
this lesson, we’ll take a closer look at the boards that can use
MicroPython.

Setup

https://micropython.org/
https://thonny.org/

The BBC Micro:bit, connected via USB.

Thonny IDE has build-in support for the Micro:bit.

The Micro:bit is equiped with a 5×5 LED matrix display on its
rear side. Therefore, there is no wiring to be done. Simply
connect the device to your computer via a USB cable.

Next, start Thonny and navigate to the Options dialog box.
Ensure that MicroPython and BBC micro is selected as the
interpreter for this session. Then, select the appropriate port.

Install the MicroPython interpreter on the
Micro:bit
The micro:bit does not come from factory with the MicroPython
interpreter installed on it.

So, if you are not able to make this work with your Thonny IDE,
once you have selected the interpreter in the port, click on the

install or update firmware in order to go ahead and install the
MicroPython interpreter on the micro:bit.

I’ve already done that, so I’m not going to overwrite my
firmware so I will click the cancel button. But in your case, you
may need to do that if this is the first time that you are
connecting your micro:bit to your computer and wanting to
use it as a MicroPython interpreter in the target device. Follow
the same process I have documented in the ESP32 flashing
lesson.

Micro:bit documentation for MicroPython

The documentation for MicroPython on the BBC Micro:bit.

Another resource that is very useful and I encourage you to
look at if you are interested in using the BBC micro:bit as a
MicroPython device is to look at the BBC micro:bit MicroPython
documentation.

There’s a lot that you can do with the micro:bit. The micro:bit
does come with a lot of onboard hardware, such as an

https://techexplorations.com/guides/esp32/micropython-with-the-esp32/6-install-micropython-on-esp32/
https://mpl-publisher.com/guides/esp32/micropython-with-the-esp32/6-install-micropython-on-esp32/
https://microbit-micropython.readthedocs.io/

accelerometer.

It comes with two programmable buttons, a 5×5 matrix led
display. It also has a row of multi-purpose input/output pins.

And the documentation shows you how to use all of that
hardware.

Hello World on the Micro:bit with
MicroPython

The 5×5 LED matrix display on the Micro:bit

In this example, I’ll show you how to write a simple program
that prints out “Hello World” in a way that it takes the
individual letters scroll across the screen.

The MicroPython instruction for this purpose is
microbit.display.scroll. The “dot” notation format of this
instruction indicates that the scroll function, is inside the
display module, which itself is inside the microbit package.

Below you can see an extract from the documentation,
showing the scroll function and its parameters.

Documentation extract for the “scroll” function.

As per the documentation, the only required value is a string in
the first parameter. The rest are optional and they have their
own default value.

Here’s my program:

>>> import microbit>>> microbit.display.scroll(“Hello
World!”)

Go ahead and type this program in the Thonny editor shell (no
need to create a file for such a small program).

This is what the program looks like in Thonny:

https://microbit-micropython.readthedocs.io/en/v2-docs/display.html#microbit.display.scroll
https://microbit-micropython.readthedocs.io/en/v2-docs/display.html#microbit.display.scroll

The “Hello World!” program in Thonny.

Because we typed the program in the shell, the MicroPython
interpreter will execute the scroll function as soon as you hit
the return key.

Turn over the Micro:bit so that you can see the LED matrix
display, and hit the return key. You should see the text
scrolling across the screen, like this:

Text scrolling on the 5×5 matrix display of the Micro:bit

Controlling individual pixels
Of course, it is possible to control each pixel on the LED matrix
display individually. To do this, you can use the “set_pixel”
function.

Here’s the extract from the documentation that provide
information about this function:

Documentation extract for the “set_pixel” function.

The first two parameters are the x and y coordinates of a pixel,
and the third paramter is the intensity (“0” will turn off the
LED, “9” will turn it on at maximum intensity).

Here’s a small program that turns on two of the pixels of the
display:

>>> import microbit>>>
microbit.display.set_pixel(0,0,9)>>>
microbit.display.set_pixel(4,4,9)>>> microbit.display.clear()

As you type the two “set_pixel” command into the shell, and
hit the return key, the two pixels at the top-left and bottom-
right of the display will turn on. The display should look like
this:

https://microbit-micropython.readthedocs.io/en/v2-docs/display.html#microbit.display.set_pixel

Two LEDs are turned on.

To clear the display and turn off all LEDs, simply call the
“clear” function.

This was a quick demonstration of how you can use the display
on the BBC micro:bit with a simple MicroPython script.

Learn MicroPython for the ESP32
With this video course, you will learn how to use
theMicroPython programming language with the ESP32 micro-
controller.

MicroPython is the perfect language for anyone looking for the
easiest (yet still powerful) way to program a micro-controller.

__CONFIG_colors_palette__{“active_palette”:0,”config”:{“color

s”:{“3e1f8”:{“name”:”Main
Accent”,”parent”:-1}},”gradients”:[]},”palettes”:[{“name”:”D
efault Palette”,”value”:{“colors”:{“3e1f8”:{“val”:”rgb(217, 49,
33)”}},”gradients”:[]},”original”:{“colors”:{“3e1f8”:{“val”:”rg
b(19, 114,
211)”,”hsl”:{“h”:210,”s”:0.83,”l”:0.45}}},”gradients”:[]}}]}__
CONFIG_colors_palette__

https://mpl-publisher.com/guides/esp32/micropython-with-the-esp32/1-what-is-micropython/

11. Thonny IDE Advanced configuration
MicroPython with the ESP32 guide series

Thonny IDE Advanced
configuration
In this lesson, I’d like to show you the advanced configuration
file of Thonny IDE so that you may modify some of the
functionality and that is not possible to do via graphical user
interface.

Thonny has an advanced configuration file titled
“configuration.ini”, found in the Thonny application folder. In
this file, you can change settings that control things such as
how code is send to the target board, the size of a block, and
whether to update the target device RTC (reat time clock)
every time Thonny connects to the device.

Documentation

Thonny advanced configuration options are documented in the

https://github.com/thonny/thonny/wiki/MicroPython#advanced-configuration

project Wiki on GitHub.

To begin with, go to the Thonny project on GitHub.

Then, scroll down to find the link for the wiki and click on it.
Look for “MicroPython” in the table of contents and click on it.
Once you reach the MicroPython page, scroll down to the
advanced configuration section. This provides information
about the advanced configuration options available for the
ESP32.

Thonny data folder

A shortcut to the data folder is in the Tools menu.

https://github.com/thonny/thonny/

The Thonny data folder.

The easiest way to find the advanced configurations file is to
use the Thonny shortcut under the Tools menu. Select “Tools”,
“Open Thonny data folder…”.

This will bring up the folder that contains the
“configuration.ini” file.

Open this file with a text editor. It looks like this:

The configuration.ini file with default settings.

Interesting configuration settings
The settings that I’m more interested at the moment are the
sync time and the UTC clock time.

As you may know, the ESP32 has a real time clock integrated
into the chip. When you use Thonny to upload a program, it is
possible for Thonny to reset the clock to the correct system
time and date.

To make that work, you make sure that the sync time keyword
is set to true.

Another thing that you can consider doing, whether you want
the real time clock to be set to UTC time or to your local
system time, then you can control that via the UTC clock
keyword. When you say false, then the RTC of your ESP32 will
be synchronised to your computer’s local time.

https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/system_time.html

In Section 12 of the MicroPython course, I have a couple of
lectures where I show you how to set the time in the RTC of
your ESP32 programmatically, both manually and by getting
accurate time and date from an internet atomic clock.

Learn MicroPython for the ESP32
With this video course, you will learn how to use
theMicroPython programming language with the ESP32 micro-
controller.

MicroPython is the perfect language for anyone looking for the
easiest (yet still powerful) way to program a micro-controller.

__CONFIG_colors_palette__{“active_palette”:0,”config”:{“color
s”:{“3e1f8”:{“name”:”Main
Accent”,”parent”:-1}},”gradients”:[]},”palettes”:[{“name”:”D
efault Palette”,”value”:{“colors”:{“3e1f8”:{“val”:”rgb(217, 49,
33)”}},”gradients”:[]},”original”:{“colors”:{“3e1f8”:{“val”:”rg
b(19, 114,
211)”,”hsl”:{“h”:210,”s”:0.83,”l”:0.45}}},”gradients”:[]}}]}__
CONFIG_colors_palette__

https://mpl-publisher.com/guides/esp32/micropython-with-the-esp32/1-what-is-micropython/

9. Thonny IDE with Raspberry Pi Pico
MICROPYTHON WITH THE ESP32 GUIDE SERIES

Thonny IDE With The
Raspberry Pi Pico
In this lesson, I will demonstrate how to use Thonny IDE and
MicroPython on a Raspberry Pi Pico.

In this lessomn, I will demonstrate how to use Thonny IDE and
MicroPython on a Raspberry Pi Pico to do something simple
with the Raspberry Pi Pico, which is, in this case, to make the
onboard LED blink.

Setup the experiment

Let’s begin be connecting the Raspberry Pi Pico to the
computer via the USB cable. Ensure that Thonny is running.
Thonny should detect the Raspberry Pi Pico.

In the Thonny Tools menu, select “options”, then “interpreter”,
and change the interpreter to the “MicroPython (Raspberry Pi

Pico)” option. Also select the correct connection port for the
device.

The Raspberry Pi Pico comes with MicroPython already flashed.
This means that it is literally “plug and play”; your don’t have
to install MicroPython like you did with the ESP32.

Documentation
You can find information about the Raspberry Pi Pico on its
web page. Scroll down on the board specifications, where
you’ll see the pin map out.

The Raspberry Pi Pico is well-equipped with all sorts of GPIO
and communications capabilities.

One interesting technology that comes with it is a
programmable input/output or PIO state machines, which allow
you to write programs and execute on specific GPIOs. Because
they run directly on the co-processors of the GPIO, they’re not
occupying any MCU cycles that are very, very fast. This is a
fairly advanced topic, though, but I thought I should mention it
because it’s really a feature that stands out when compared to
other microcontroller units. If you are curious about PIO, see
the RP2040 documentation (PDF) and browse to pave 338

https://www.raspberrypi.org/documentation/rp2040/getting-started/
https://datasheets.raspberrypi.org/rp2040/rp2040-datasheet.pdf

(section 3.3. PIO Assembler).

Experiment
In this simple example, I will show you how to toggle the state
of the built-in LED. Just as you can see in the pin map out, it is
connected to GP25 using Thonny IDE.

Here what this looks in Thonny IDE, with the resulting lit
onboard LED:

Here’s the code showing in the Thonny IDE shell:

>>> from machine import Pin>>> led = Pin(25, Pin.OUT)>>>
led.toggle()>>> led.toggle()>>> led.value(0)>>>
led.value(1)

First, import the Pin module from the machine library. The
machine library is a library that is available for all
microcontroller units that support MicroPython. It contains
functions that are specifically created for the microcontroller
that you’re targeting. In this case, the machine library contains
functions that specifically apply to the Raspberry Pi Pico.So,
now, that you have access to the Pin module, you can use the
capabilities it provide to do things such as toggle the state of
the LED

Next, create the LED object and set pin 25 as an output. are
targeting GP25Now, that you have this object, you can use the
toggle() function to turn it on or off.

You can also use the “value” function to explicitly control the
state of a pin.

You can also check the state of the LED by calling the value,
but without a parameter.

In the next lesson I’ll show you how to do something similar
with the BBC Micro:bit. The purpose of these couple of lessons
is to show you how versatile MicroPython. It makes it possible
to jump from one kind of hardware to another with some
relatively small modifications to your MicroPython program.

Learn MicroPython for the ESP32
With this video course, you will learn how to use
theMicroPython programming language with the ESP32 micro-
controller.

MicroPython is the perfect language for anyone looking for the
easiest (yet still powerful) way to program a micro-controller.

__CONFIG_colors_palette__{“active_palette”:0,”config”:{“color
s”:{“3e1f8”:{“name”:”Main
Accent”,”parent”:-1}},”gradients”:[]},”palettes”:[{“name”:”D
efault Palette”,”value”:{“colors”:{“3e1f8”:{“val”:”rgb(217, 49,
33)”}},”gradients”:[]},”original”:{“colors”:{“3e1f8”:{“val”:”rg
b(19, 114,
211)”,”hsl”:{“h”:210,”s”:0.83,”l”:0.45}}},”gradients”:[]}}]}__
CONFIG_colors_palette__

https://mpl-publisher.com/guides/esp32/micropython-with-the-esp32/1-what-is-micropython/

12. Find Python Packages at PyPI
MICROPYTHON WITH THE ESP32 GUIDE SERIES

Find Python Packages At
PyPI
PyPi is a repository of Python and MicroPython packages. You
can search PyPi from Thonny IDE and install packages with a
single click. In this lesson I’ll show you how.

The Thonny PyPi tool
You can install a Python package directly from the Thonny ID
user interface.

You will find the PyPi search and installation tool under Tools,
Manage Packages.

https://pypi.org/

Example 1: search, find, install a
MicroPython package
PyPi contains thousands of Python packages. Only some of
them are specifically written in MicroPython. Most MicroPython
packages are written to be compatible with a specific
microcontroller, like the ESP32 or the Micro:bit.

You need to be mindful of this, and take care so that the
package that you eventually download to your Thonny is
actually compatible with your target device.

I’ll show you an example of how to do this.

https://pypi.org/

Let’s start with a very broad search on the term “MicroPython”
directly on the PyPi website. This search will return any
packages that contain the term “MicroPython”.

A generic search on PyPi for the term “MicroPython” returns
884 projects.

As you can see there are almost a thousand project that
contain this name, I am not familiar with any of the projects
showing in the first page of the list.

I’ll pick one randomly to take a closer look, from page two of
the list.

The “lucky” project is titled “micropython-selectors 0.0.1“.

https://pypi.org/project/micropython-selectors/

I found this package in PyPi. Looks intersting. Let’s install it in
Thonny.

Let’s say that this is a package that you would like to use in
your MicroPython project. The next thing to do is to download
it and install it in Thonny. Copy the name, go to Thonny, bring
up the Manage Packages window (under “Tools”), and copy
the package name in the search field.

Search for a package in PyPi by name.

Click on the package name to see more informatio, then click
on Install.

In the list of results, you’ll find the package with the name you
searched for at the top. Click on the package hyperlink to get
to the package information page. Click on the Install button to
download and install the package.

A few seconds later, you’ll see the package listed in the left-
side packages list.

The installed packages appear in the list on the left of the
Manage Packages window.

Example 2: search for a specific
MicroPython package (gives error)
Let’s look at another example. Unlike the previous generic
search, now I’d like to be somewhat more specific. Let’s look
for a MicroPython package that is compatible with the ESP32.

Let’s try this search term: “MicroPython dht ESP32”.

With this search I hope to find a DHT11 or DHT22 MicroPython
driver for the ESP32.

Do the search in PyPi.org and take a minute to look at the
results.

A search for “micropython dht esp32”.

Because MicroPython can be used across a lot of different
hardware targets, not all the package search results will be
compatible with the target you intend to use. However, ESP23
and ESP8266 are (generally) cross-compatible when it comes
to MicroPython. So, in general, if you find a package that is

https://pypi.org/

marked to be compatible with the ESP8266, chances are that
the package will also work with the ESP32.

In the result list for the term “micropython dht esp32”, there
are several hits. One that drew my interest is titled
“micropython-wifimanager“.

This package looks interesting, and is compatible with both
ESP32 and ESP8266.

Let’s install this package in Thonny.

Follow the exact same process as with example 1. Copy the
package name into the Thonny package manager tool, and
click on the “Install” button.

Unfortunately, the installation failed for me at the time I was
writing this guide (it may work for you).

https://pypi.org/project/micropython-wifimanager/

This package cannot be installed in Thonny.

I am not sure why the installation failed, but the error message
suggest a problem with the configuration of the package itself,
and not Thonny.

This is unfortunate, but not the end of the world.

Let’s try something else.

Example 3: esp32-net-config
An interesting package is titled “esp32-net-config”. It creates a
local WiFi access point so that you can configure a hot-spot
SSID and password without having to hard-wire this
information on your ESP32.

Install it as you did with examples 1 and 2. The package
contains several files, that will be listed in the left text box:

The “esp32-net-config” package consists of several files.

Close the package manager, and look at the file browser of the
ESP32 target device in the left bottom corner of the Thonny
IDE. Inside the lib directory you can see the files that make up
the package you just installed.

Click on the config.py file (or any of the other files, if you
prefer), to look inside.

The contents of the config.py file, and the files that make up
the “esp32-net-config” package listed in the ESP32 file
browser.

If you want to curious to learn how to use this package, you
can have a look at the information in the project’s GitHub
repository which contains instructions and examples.These
were three simple examples of how you can find, install, and
inspect MicroPython packages available in the PyPi repository.

Learn MicroPython for the ESP32
With this video course, you will learn how to use
theMicroPython programming language with the ESP32 micro-
controller.

MicroPython is the perfect language for anyone looking for the
easiest (yet still powerful) way to program a micro-controller.

https://github.com/tflander/esp32-machine-emulator
https://github.com/tflander/esp32-machine-emulator
https://pypi.org/

__CONFIG_colors_palette__{“active_palette”:0,”config”:{“color
s”:{“3e1f8”:{“name”:”Main
Accent”,”parent”:-1}},”gradients”:[]},”palettes”:[{“name”:”D
efault Palette”,”value”:{“colors”:{“3e1f8”:{“val”:”rgb(217, 49,
33)”}},”gradients”:[]},”original”:{“colors”:{“3e1f8”:{“val”:”rg
b(19, 114,
211)”,”hsl”:{“h”:210,”s”:0.83,”l”:0.45}}},”gradients”:[]}}]}__
CONFIG_colors_palette__

https://mpl-publisher.com/guides/esp32/micropython-with-the-esp32/1-what-is-micropython/

13. The MicroPython shell
MICROPYTHON WITH THE ESP32 GUIDE SERIES

The MicroPython Shell
In this lesson I’ll show you a couple of ways to interact with the
MicroPython Shell and run interactive programs or execute
programs that are already stored on the ESP32 file system.

MicroPython provides an interactive shell that is running on
the ESP32 (or any other compatible device, such as the
Raspberry Pi Pico or the BBC Micro:bit).

You can connect to the MicroPython shell via a terminal tool
like Putty or screen.

Of course, you can also use Thonny or even the Arduino IDE
serial monitor.

In this lesson I will show you how to use Thonny and Serial.
Both of these tools make it easy to interact with MicroPython
via the shell.

https://thonny.org/
https://www.decisivetactics.com/products/serial/

Shell with Thonny

The Thonny IDE shell gives you access to the MicroPython
interpreter that is running on the ESP32.

Connect your ESP32 to your computer and start Thonny.
Ensure that the correct port is selected (see lesson 5).

Once your ESP32 is connected, you will see the MicroPython
shell prompt in the “Shell” tab, located at the lower half of the
Thonny editor. The prompt looks like this (three greater-then
symbols):

>>>

The Shell, is running on the ESP32, not Thonny.

Thonny simply provides a tool to access the Shell.The shell is
now active and waiting for me to type in an instruction.

https://techexplorations.com/guides/esp32/micropython-with-the-esp32/5-getting-started-with-thonny-ide/

I have already connected an LED (via a 220Ohm resistor) to
GPIO 21. Ensure that the short pin of the LED is connected
closer to the GND pin, and the longer pin closer to GPIO 21.
You can place the resistor on either side of the LED, it really
doesn’t matter which side.

This LED is controlled by GPIO 21.

MicroPython contains a module that allows us to work with the
file system. This module is named “uos”. You can see its
documentation for details.

Let’s use it now.

Start by importing the uos module so you can use its
functions:

>>> import uos

Next, call the listdir() function which will list any files in the
root directory:

https://docs.micropython.org/en/latest/library/uos.html
https://docs.micropython.org/en/latest/library/uos.html#uos.ilistdir

>>> uos.listdir()

The result is this:

listdir() returns a tupple with the contents of the root directory.

There are two files (“hello_world.py” and “boot.py”) and one
directory (“lib”) in the root directory of my ESP32’s file system.

Say that you’d like to execute the program contained in the
hello_world.py file. to do that, use Of course, the
hello_world.py contains this script. And I can just type it in the
Shell and run it interactively. I just say hello here and it will
come back. Now, let’s say that instead of you typing the
interactive command into the Shell, you want to execute an
existing file like the hello_world.py file, right? So, how do you
do that?

You can use the execfile() function:

>>> execfile(“hello_world.py”)

The response is this:

https://python-reference.readthedocs.io/en/latest/docs/functions/execfile.html

Use execfile() to execute a MicroPython program on the shell.

Now, let’s do the same experiment using the Serial tool,
instead of Thonny.

Shell with Serial
Only one client can access the Python or MicroPython shell at a
time. Before you can use Serial, you must disconnect Thonny.
You can do this by clicking on “Disconnect” under the Run
menu.

Disconnect the ESP32 from Thonny to use a different shell
utility.

Next, start Serial and type Command-D (or Terminal –>
Connect, via the menu) to connect to your ESP32.

In Serial you can bookmark a USB or network device so that
you can connect to it quickly. In most cases, Serial will
automatically detect and configure a USB serial port. Here’s
the bookmark for my ESP32:

The bookmark for my ESP32 in Serial.

Once Serial is connected to the MicroPython shell running on
the ESP32, you will see the familiar MicroPythyon prompt
(“>>>”). MicroPython is ready for your instructions.

Serial is connected to the MicroPython shell.

From here, you can interact with the shell as you would in
Thonny or any other tool. Let’s do the same experiment.

>>> import uos>>> uos.listdir()>>>
execfile(“hello_world.py”)

Here is the shell session as it looks in Serial:

An example MicroPython shell session in Serial.

To disconnect Serial so you can use Thonny again, type
Command-D or use the menu (Terminal –> Disconnect).

Shell with Thonny: LEDs and blocks
Back in Thonny, you can click on the Stop button (yes, I know,
counter-intuitive but that’s how it is!). The ESP32 is now
connected to Thonny.

The Stop buttons actually toggles connect/disconnect. When
you reconnect, you will see a new shell prompt.

Let’s have a look at another example that involves the LED.

Copy this code into your MicroPython shell:

>>> from machine import Pin>>> led = Pin(21, Pin.OUT)>>>
led.on()>>> led.off()>>> led.on()>>> led.off

Here’s how this looks in the shell:

Controlling an LED on the MicroPython shell.

I’ll be explaining in detail what each of these instructions do in
a dedicated part of the MicroPython course. In summary, I am
creating an “led” object of class Pin, for the LED that is
connected to GPIO 21, and use the on() and off() functions to
control its state.

Easy, right?

The MicroPython shell also allows you to create blocks of code,
complete with the ability to deal with Python indentations.

Here is one example (use the tab key or the space bar to enter
the same indentation for each line inside the “while” block):

>>> from utime import sleep>>> while True: led.on()
sleep(0.5) led.off() sleep(0.5)

The while block implements an infinite loop. In each cycle, the
LED will turn on for 0.5 seconds and off for 0.5 seconds.

To exit the infinite loop, type Ctr-C.

https://docs.micropython.org/en/latest/library/machine.Pin.html?highlight=#machine.Pin
https://docs.micropython.org/en/latest/library/machine.Pin.html?highlight=#machine.Pin.on
https://docs.micropython.org/en/latest/library/machine.Pin.html?highlight=#machine.Pin.off

I have used Ctrl-C to interrupt a running MicroPython program

The shell can remember ealier instructions. You can use the up
and down arrow keys to navigate history, and hit the return to
re-submit an old instruction.As you can see, the shell is easy to
use, and provide a quick way to prototype and test instructions
as you are working on a program.

Learn MicroPython for the ESP32
With this video course, you will learn how to use
theMicroPython programming language with the ESP32 micro-
controller.

MicroPython is the perfect language for anyone looking for the
easiest (yet still powerful) way to program a micro-controller.

__CONFIG_colors_palette__{“active_palette”:0,”config”:{“color
s”:{“3e1f8”:{“name”:”Main
Accent”,”parent”:-1}},”gradients”:[]},”palettes”:[{“name”:”D
efault Palette”,”value”:{“colors”:{“3e1f8”:{“val”:”rgb(217, 49,
33)”}},”gradients”:[]},”original”:{“colors”:{“3e1f8”:{“val”:”rg
b(19, 114,
211)”,”hsl”:{“h”:210,”s”:0.83,”l”:0.45}}},”gradients”:[]}}]}__
CONFIG_colors_palette__

14. MicroPython Programming with files
MICROPYTHON WITH THE ESP32 GUIDE SERIES

MicroPython
Programming With Files
In this lesson I will show you how to split your MicroPython
programs into multiple files so that you can better organize
your code.

In this lesson I will show you how to split your MicroPython
programs into multiple files so that you can better organize
your code.

Doing so is particularly useful as your programs become larger
and more complicated.

One program, two files
To show you how to split your MicroPython program into
multiple files, I have prepared a simple example. The example
contains two files, that I list below (first, screenshots that show
how these files look in Thonny, followed by the code):

arithmetic.py in a Thonny tab.

use_arithmetic.py in a Thonny tab.

arithmetic.py

def add_numbers(number1, number2): # Display the sum
print(‘{0} + {1} = {2}’.format(number1, number2, number1
+ number2))

def subtract_numbers(number1, number2): print(‘{0} – {1} =
{2}’.format(number1, number2, number1 – number2))

use_arithmetic.py

import arithmetic

number1 = 1.5number2 = 6.3

arithmetic.add_numbers(number1,
number2)arithmetic.subtract_numbers(number1, number2)

arithmetic.py
The first file is titled “arithmetic.py”, and it contains two
functions.

The first one is “add_numbers” that receives two numerical
parameters, adds them, and prints the result to the shell.

The second function is titled “subtract_numbers”. This function
also receives two parameters, subtracts them and prints out
the result to the shell.Don’t worry about the details of how
these programs work. I have a complete section in the course
dedicated to the MicroPython language where I explain
everything, including the use of the format function, how to
create custom functions, parameters and classes.

use_arithmetic.py
The second file is titled “use_arithmetic.py”.

In the first line, we use the import keyword to import the
contents of the “arithmetic.py” file. With this import, we can
now use the two functions defined inside arithmetic.py without
having to write them again.

In other words, the file arithmetic.py consists of a small
MicroPython module that we can import and use in other
programs.

To import a module, we use the import keyword followed by
the name of the file that contains the code that we want to
import, without the “.py” extension.

Next in use_arithmetic.pu, I create two variables to hold the
numbers that I want to use later, and give each an initial
value.

Finally, I call the calculation functions that exist in the
arithmetic module to do the addition and subtraction between

https://docs.python.org/3/library/string.html#formatspec
https://docs.python.org/3/reference/import.html?highlight=import
https://docs.python.org/3/reference/import.html?highlight=import

those numbers.

Execute the program
As with any MicroPython program in Thonny, to run it, simply
click on the play button.

My modular program has executed. Output is in the shell.

Why split a program?
The files in this example are tiny. But imagine your programs
getting bigger and bigger as you become more proficient in
the language. Being able to split them into multiple files
results in programs that are more efficient, easier to manage,
easier to modify and easier to share. Each file can be
dedicated to a single task or a set of closely related tasks.

Learn MicroPython for the ESP32
With this video course, you will learn how to use
theMicroPython programming language with the ESP32 micro-
controller.

MicroPython is the perfect language for anyone looking for the
easiest (yet still powerful) way to program a micro-controller.

__CONFIG_colors_palette__{“active_palette”:0,”config”:{“color
s”:{“3e1f8”:{“name”:”Main
Accent”,”parent”:-1}},”gradients”:[]},”palettes”:[{“name”:”D
efault Palette”,”value”:{“colors”:{“3e1f8”:{“val”:”rgb(217, 49,
33)”}},”gradients”:[]},”original”:{“colors”:{“3e1f8”:{“val”:”rg
b(19, 114,
211)”,”hsl”:{“h”:210,”s”:0.83,”l”:0.45}}},”gradients”:[]}}]}__
CONFIG_colors_palette__

https://mpl-publisher.com/guides/esp32/micropython-with-the-esp32/1-what-is-micropython/

15. How to interrupt a running program
MICROPYTHON WITH THE ESP32 GUIDE SERIES

How To Interrupt A
Running Program
In this lesson, I’ll show you how to interrupt a running program
and how to restart your ESP32 using soft reset.

To demonstrate how to interrupt a running program and rest
your ESP32, I’ll use our familiar “blinking LED script”.

Here is the script:

from machine import Pinfrom utime import sleepled = Pin(21,
Pin.OUT) while True: print(“.”) led.on() sleep(0.5) led.off()
sleep(0.5)

Notice that inside the “while” block, I have added a line that
prints a dot character in the shell. This will help us recognise
that the program is running without having to look at the LED
on the breadboard.In this lesson, we’ll take a closer look at the

boards that can use MicroPython.

Ctrl-C to interrupt a program
Click on the play button to start the program. Notice that the
LED is blinking, and a new dot character appears in the shell
every 0.5 seconds.

While the program is running, you cannot use the shell. To re-
gain access to the shell, you must interrupt the program. This,
essentially, will end the program execution.

To interrupt the program you can use the Interrupt execution
command, under the Run menu.

Or, you can type Crtl-C on your keyboard.

Control-C will interrupt a running program and give you access
to the shell.

Pressing Ctrl-C results to a KeyboardInterrupt event.

Ctrl-D to soft-reboot a program
As opposed to a keyboard interrupt via Ctrl-C, you can do a
soft-reboot by typing Ctrl-D, or selecting “Send EOF / Soft
Reboot” from the Run menu.

When you do a soft reboot, your ESP32 restarts your program
from “scratch”. As opposed to Ctrl-C, you do not get access to
the shell, since the program is still running.

Try Ctrl-D while the blinking LED program is running. Notice
that after you do a soft-reboot, the shell shows a horizontal
line, and then new dots appear, generated by the running
program.

Ctrl-D does a soft-reboot.

The soft-reboot is indicated by a horizontal line in the shell.

After a soft reboot, the RAM of your ESP32 will not be cleared.
Any variable values remain in the RAM.

Learn more about the reset and boot modes in MicroPython
here.

Stop/Restart backend
Another option available to us is to stop and restart the
backend. The result of this is that your ESP32 does a “hard
reset”. This is similar to pressing the reset button on the board
itself.

Of course, a hard reset will stop the program and give you a
fresh shell prompt. All RAM contents are lost, but the flash
memory remains so any files stored in the ESP32 file system
will remain intact.

You can also do a hard-reset by clicking on the Stop button in
Thonny.

http://docs.micropython.org/en/v1.8.6/wipy/wipy/tutorial/reset.html

Stop/Restart backend has the effect of a hard-reset operation.

After a hard-reset, a running program will stop and you will get
a fresh shell command prompt.

Disconnect
Finally, you can simulate the physical disconnection and
connection of the USB cable by selecting Disconnect from the
Run menu.

Edit your caption text here

Often, this is an effective way to deal with communications
problems between your computer and the target device. If a
software disconnect and connect does not help, the next step
would be to physically disconnect and connect the USB cable.

Learn MicroPython for the ESP32
With this video course, you will learn how to use
theMicroPython programming language with the ESP32 micro-
controller.

MicroPython is the perfect language for anyone looking for the
easiest (yet still powerful) way to program a micro-controller.

__CONFIG_colors_palette__{“active_palette”:0,”config”:{“color
s”:{“3e1f8”:{“name”:”Main
Accent”,”parent”:-1}},”gradients”:[]},”palettes”:[{“name”:”D
efault Palette”,”value”:{“colors”:{“3e1f8”:{“val”:”rgb(217, 49,
33)”}},”gradients”:[]},”original”:{“colors”:{“3e1f8”:{“val”:”rg
b(19, 114,
211)”,”hsl”:{“h”:210,”s”:0.83,”l”:0.45}}},”gradients”:[]}}]}__
CONFIG_colors_palette__

https://mpl-publisher.com/guides/esp32/micropython-with-the-esp32/1-what-is-micropython/

16. How to run a program at boot
MICROPYTHON WITH THE ESP32 GUIDE SERIES

How To Run A Program
At Boot
In this lesson, I’ll show you how to set your ESP32 to execute a
program when it powers up or when you press the reset
button.

To make this possible, we’ll use the boot.py and main.py files.

I will also show you how to stop autostart so you can regain
control of your ESP32.

I updated this guide page on October 6, 2023. In this update I
added information about the “main.py” file, on how to stop

“boot.py” from hijacking your ESP32. I will update the video
shortly.

Up to now, you have been programing the ESP32 by having it
constantly connected to the computer. From Thonny, you click
on the green “play” button to trigger the selected program to
run.

Imagine that you have finished working on your program, and
want your ESP32 to be independent of your computer. You
want the ESP32 and to be able to automatically execute a
given program when power is applied.There are a couple of
ways by which you can do that.

In this lesson, I will show you both of them.

In the first method, we’ll use the “boot.py” file. In the second
method, we’ll use the “main.py” file. Before we start, let’s
understand the differences and similarities between boot.py
and main.py.

In this lesson, I will show you both of them.

In the first method, we’ll use the “boot.py” file. In the second
method, we’ll use the “main.py” file. Before we start, let’s
understand the differences and similarities between boot.py
and main.py.

boot.py vs main.py
When you’re working with MicroPython, you’ll often come
across two important files: boot.py and main.py. These files
serve distinct purposes and understanding their roles can help
you structure your projects more effectively.

Think of boot.py as the welcoming committee for your
MicroPython board. As soon as the board powers up or resets,
boot.py is the first file that gets executed. This file is your go-
to place for setting up initial configurations like network

settings or initializing peripherals. It’s crucial to keep this file
as minimal as possible. The reason is simple: if something
goes wrong in boot.py, it could prevent the board from booting
up properly, and you might not even get to the point where
main.py runs.

Once boot.py has done its job, main.py takes over. This file is
where the meat of your application resides. Whether you’re
running a web server, reading from sensors, or executing any
other main tasks, main.py is where all this action happens.
Unlike boot.py, which runs just once at boot-up, main.py runs
in a loop, continuously executing its code unless you’ve
programmed it to do otherwise.

The Order of Execution

The sequence is straightforward. Boot.py runs first, setting the
stage for main.py, which follows immediately after. If boot.py
is the opening act, main.py is the main event.

Handling Errors

It’s worth noting that errors in boot.py can stop main.py from
running. On the other hand, if something goes awry in
main.py, it won’t affect the initial boot process, which is
managed solely by boot.py.

Flexibility and Control

Both boot.py and main.py are accessible via the file system,
meaning you can edit or even remove them as you see fit.
However, it’s generally a good idea to exercise caution,
especially with boot.py, to ensure a smooth boot-up process.

As you can see, you can add code to both files. Generally,
you’ll add initialisation code to boot.py, and the main
application code to main.py. But in simple scenarios, such as
getting an LED to blink, you can add your code to either file.
That’s what we’ll do next.

boot.py
In MicroPython, “boot.py” is a special-purpose file.

If it exists in the root of the MicroPython filesystem, the ESP32
will try to read it and execute the program it contains.

The default boot.py file. Notice that the program it contains is
commented out.

When you install a fresh instance of the MicroPython firmware
on your ESP32 or other hardware target, a boot.py file will be
written in the filesystem. You can open this file in Thonny to
have a look. As you can see in the screenshot above, the
default boot.py file does contain some code, but it is
commented out, and therefore inactive.

You can replace this code with yours.

Let’s do that now.

Experiment 1: using boot.py
To demonstrate how boot.py works, I’ll use the sample code
from the previous lecture.

Here’s the code:

https://techexplorations.com/guides/esp32/micropython-with-the-esp32/15-how-to-interrupt-a-running-program/

from machine import Pinfrom utime import sleepled = Pin(21,
Pin.OUT) while True: print(“.”) led.on() sleep(0.5) led.off()
sleep(0.5)

Copy this code in the boot.py file so that it looks like this (I did
not replace the existing commented-out code):

The new content of the boot.py file.

Now that this code exists in the boot.py file, it will execute
automatically next time I power-up the device. I don’t need to
connect the device to the computer, and I don’t need to click
on the play button in Thonny to run the program.

To test this, follow this process:

Disconnect the device from the computer by1.
unplugging the USB cable from the
computer USB port (leave the cable
connected to the device).
Connect the USB cable to a USB power2.
supply, like a phone charger. This will power
up the device.
The program stored in boot.py will start ,3.
and the LED connected to GPIO 21 will start

to blink.

What you have achieved is to make your ESP32 independent
of your computer.

Problem: boot.py takes over your ESP32
(and how to deal with this)
Because the example code in boot.py contains an infinite loop,
when you reconnect the ESP32 to your computer so that you
can continue your work in Thonny, the ESP32 will be busy
blinking the LED and will not give you a MicroPython shell,
allow you to modify the program, or interact with the
filesystem. Essentially, your ESP32 is locked up in the infinite
loop.

Normal ways of interrupting the program will not work.
Clicking on the Stop button or typing Ctrl-C will simply reboot
the board, and restart execution of the program in the boot.py
file.

The only way (that I am aware off) for regaining control of your
board so that you can make changes to the boot.py program
(or to delete it) is to re-flash the board. Follow the method you
learned in this earlier article in this series.

Experiment 2: import a program into
boot.py
When you have a small program to run at boot up, copying it
into the boot.py file is not a problem; it just works.

Imagine that you have a larger and more complicated
program. You’ve been working on it for a while, and it works
well enough to deploy in the field.

Copying a large file into boot.py is an option but it is messy.

https://techexplorations.com/guides/esp32/micropython-with-the-esp32/6-install-micropython-on-esp32/

You will end up with two copies of the same file. If you need to
make changes, you’ll have to remember to apply the changes
to both files.

That’s a recipe for problems down the track that is easily
avoided using an import statement.

You have already learned how to use the import statement.

In this example, the program that you want to execute in boot
up is stored in the file titled “led_blink.py”.

Inside boot.py, simply use this line of code:

import led_blink

At boot up, the ESP32 will read boot.py which contains the
import statement. Then, the ESP32 will import the code stored
in led_blink.py and execute it. The result will be, predictably, a
blinking LED.

The boot.py file contains an import statement for the main
program file.

To test that this method works, repeat the same 3 steps as
listed in Experiment 1 in this lesson. Power up the ESP32 from
an external power supply (not your computer), to confirm that

https://techexplorations.com/guides/esp32/micropython-with-the-esp32/14-micropython-programming-with-files/

the LED on GPIO21 is blinking.

main.py
As you learned earlier, in Micropython, there is the main.py file
that is executed automatically after boot.py. If your program is
simple, and does not need any special code such as boot-up
configuration, you can use main.py instead of boot.py to
automatically execute a program when your board starts.

In almost every respect, boot.py and main.py do the same
thing: they automatically execute a program at startup.
However, with main.py, you can easily stop execution with
Ctrl-C instead of having to re-flash the board. Therefore,
main.py is easier, and more appropriate in most use cases.

Let’s repeat the LED-blink experiment with main.py. In Thonny,
copy the following program into a new file with name
“main.py”, and save this file on the device.

from machine import Pinfrom utime import sleepled = Pin(21,
Pin.OUT)

while True: print(“.”) led.on() sleep(0.5) led.off() sleep(0.5)

The program in main.py

Just like with boot.py, after you save the main.py file, power-
cycle the board (i.e. unplug the USB cable, and then plug it
back into a USB port). When the board is powered again, the
LED will blink, indicating that the code in the main.py file is
running.

To stop the program, follow this process:

1. click on the STOP button in Thonny (this will connect the
Thonny shell to the board),

2. Press and hold Ctrl-C until you see the “soft reboot”
message.

At that time, the program in main.py will stop, you will re-gain
control of the shell, and you will see the files in the device file
system.

After clicking STOP and hold Ctr-C until a soft reboot occurs,
you are back in control of your board.

Once you are back in control of your board, you can make any
changes you want to the contents of the main.py file. Next
time you power-cycle the board, the program in main.py will
automatically start.

If you don’t want to auto-start, simply rename or remove the
main.py and boot.py files.

With the help of the boot.py and main.py files you can
automatically run a program when your ESP32 is powered up.

The next thing that I want to show you is how to do simple
debugging of your MicroPython scripts using Thonny IDE. Let’s
do that in the next lecture.

Learn MicroPython for the ESP32
With this video course, you will learn how to use
theMicroPython programming language with the ESP32 micro-
controller.

MicroPython is the perfect language for anyone looking for the
easiest (yet still powerful) way to program a micro-controller.

__CONFIG_colors_palette__{“active_palette”:0,”config”:{“color
s”:{“3e1f8”:{“name”:”Main
Accent”,”parent”:-1}},”gradients”:[]},”palettes”:[{“name”:”D
efault Palette”,”value”:{“colors”:{“3e1f8”:{“val”:”rgb(217, 49,
33)”}},”gradients”:[]},”original”:{“colors”:{“3e1f8”:{“val”:”rg
b(19, 114,
211)”,”hsl”:{“h”:210,”s”:0.83,”l”:0.45}}},”gradients”:[]}}]}__
CONFIG_colors_palette__

https://mpl-publisher.com/guides/esp32/micropython-with-the-esp32/1-what-is-micropython/

17. How to debug MicroPython program
MICROPYTHON WITH THE ESP32 GUIDE SERIES

How To Debug A
MicroPython Program
In this lesson, I will show you a few techniques you can use to
debug and troubleshoot your MicroPython scripts.

To demonstrate how to debug and troubleshoot MicroPython
scripts using the Thonny editor, we’ll use the same demo
script that your are familiar from the previous few lectures.

Here the script:

from machine import Pinfrom utime import sleepled = Pin(21,
Pin.OUT) while True: print(“.”) led.on() sleep(0.5) led.off()

sleep(0.5)

Use print statements to help with tracing
If you come from the Arduino world, then you are familiar with
how we use print statements there to try and figure out what
is happening during runtime.

In the screenshot I provide below, I have added a couple of
print statements that contain a value that I am interested in
using to evaluate whether my program is working properly or
not. The print statement looks like this:

print(“LED is “, led.value())

In the screenshot, you can see the output of these print
statements in the shell.

Why are print statements (like in this example) useful?

Here’s a simple scenario:

Imagine that I had not properly connected the LED to GPIO21,
or the LED was damaged.

Even though this program is correct, the LED would not blink.
By including the led value in the print statement, I have
confirmation in the shell that my program is working properly.

This would prompt me to look at the LED for the source of the
problem (i.e. the LED not blinking as expected).

Of course, this is a simple scenario. However, print statements
can scale up to much more complicated situations so they
comprise of a indispensable debugging tool.

Print statements provide a simple way to trace the execution
of your program by printing out debug values in the shell.

MicroPython error messages
The MicroPython interpreter produces error messages that can
provide valuable clues for when things go wrong. Even though
some times the information they provide can be very broad
and generic, in most cases you can use these messages to find
and fix a programming bug within seconds.

Example 1: parameter typo bugs
Let’s have a look at a simple example.

In line 4 of the demo program, I have introduced an innocent

type. It can happen to all of us. Here’s the new “buggy” line 4
(bug in bold):

led = Pin(211, Pin.OUT)

This bug results in MicroPython trying to setup a GPIO that
does not exist.

When you try to execute this file, you will see a “ValueError” in
the shell.

It looks like this:

This typo has generated a very specific and useful error
message.

The error message is very useful because it is very specific. It
both identifies line 4 as the location of the bug, and even the
kind of but that it is (“invalid pin”).

Fixing it is quick and easy, just remove the redundant “1”.

Let’s look at one more bug that involves an incorrect
parameter. Here’s another buggy line, again in line 4 of the
demo program (bug in bold):

led = Pin(21, Pin.OUTs)

Run the program. The interpreter complains an
“AttributeError”.

Again, this error is very specific, and informs you that the
problem is in line 4, and the the object “Pin” does not have an
attribute “OUTs”:

This error message specifically highlights the incorrect
attribute.

With this information, you can easily find the bug and fix it.

Generally, bugs that involve parameters produce accurate and
descriptive error messages. But not all error messages are like
this. Let’s look at an example where a simple typo generates
an error message that is not as accurate.

Example 2: Name errors
A “NameError” is an error that relates to using an incorrect
keyword. A keyword can be something like a variable or a
reserved language keyword.

For example, in the demo program, I will introduce a bug by
making a typo in the “while True:” loop statement. After the
bug, the relevant line looks like this (bug in bold):

while Truae:

When you try to execute the program, a “NameError” error
message is generated:

The bug is in line 6, but the error message indicates line 13.

This bug is more challenging to fix because it indicates the
location of the bug in line 13, even though the actual location
is line 6.

However, the clue that is more useful is that the buggy
keyword “Truae” is included in the error message. In such
cases, you can do a quick text search in your program for the
offending keyword so that you can find it, and then fix
it.Lesson to remember: error messages provide clues that you
have to consider in their entirety. The line number is just one
of these clues, and it may be incorrect.

Example 3: Positional arguments
Let’s look at one more bug. In one of the led functions, I have
introduced an incorrect parameter, like this (bug in bold):

led.off(3)

As you probably know, the Pin.on() and Pin.off() functions do
not take any arguments. When you try to run this program, the
interpreter will throw a “TypeError”, like this:

This error message identifies the correct bug location, but the
description is confusing

This error message identifies the correct location of the bug,
line 11.

However, the description is confusing. The description
suggests that the function “off” requires one positional
argument, but that two arguments were given. As you can
clearly see, I have only given a single argument (not two, as
the message claims), and I know that the correct number of
arguments is zero (not one, as the message claims).

The counting of positional arguments in MicroPython functions
relate to the “self” keyword, and I address it in a dedicated
lecture in the course. But for now, it is worth taking into
account the fact that this specific message can really throw
you of and cause confusion, at least for a short time.

To fix it, I would start by not taking much note of the specific
number of arguments that the error message indicates.
Instead, I would look at the documentation of the specific
function in question. This would give me authoritative
information about how many arguments the function requires
(if at all it requires arguments), and of what kind.

You can find the documentation for the off() function here. As
you can see, this function takes no arguments.

The Pin.off() function takes no arguments.

https://docs.micropython.org/en/latest/library/machine.Pin.html?highlight=#machine.Pin.off

With this information you can reason that the problem is the
value “3” in the off() function. You’ll be able to fix the bug by
removing the “3”.

In the course, during the experiments, we’ll be bumping into
various programming problems. And in many cases, I’ll be
showing you “live” how I solved those problems.

But for now, keep in mind what you have learned in this
lessons as it will help you save a lot of time and spare a lot of
frustration as you are programming your ESP32 using
MicroPython.

Learn MicroPython for the ESP32
With this video course, you will learn how to use
theMicroPython programming language with the ESP32 micro-
controller.

MicroPython is the perfect language for anyone looking for the
easiest (yet still powerful) way to program a micro-controller.

__CONFIG_colors_palette__{“active_palette”:0,”config”:{“color
s”:{“3e1f8”:{“name”:”Main
Accent”,”parent”:-1}},”gradients”:[]},”palettes”:[{“name”:”D
efault Palette”,”value”:{“colors”:{“3e1f8”:{“val”:”rgb(217, 49,
33)”}},”gradients”:[]},”original”:{“colors”:{“3e1f8”:{“val”:”rg
b(19, 114,
211)”,”hsl”:{“h”:210,”s”:0.83,”l”:0.45}}},”gradients”:[]}}]}__
CONFIG_colors_palette__

https://mpl-publisher.com/guides/esp32/micropython-with-the-esp32/1-what-is-micropython/

	0-1-introduction-to-micropython-with-the-esp32-what-is-micropython
	1-2-micropython-vs-cpython
	2-3-micropython-resources
	3-4-micropython-compatible-boards
	4-5-getting-started-with-thonny-ide
	5-7-set-the-python-interpreter
	6-6-install-micropython-on-the-esp32
	7-8-how-to-write-and-execute-a-micropython-program
	8-10-thonny-ide-with-bbc-microbit
	9-11-thonny-ide-advanced-configuration
	10-9-thonny-ide-with-raspberry-pi-pico
	11-12-find-python-packages-at-pypi
	12-13-the-micropython-shell
	13-14-micropython-programming-with-files
	14-15-how-to-interrupt-a-running-program
	15-16-how-to-run-a-program-at-boot
	16-17-how-to-debug-micropython-program
	Blank Page

