

Peter Dalmaris, PhD

ESP32 An Introduction

Get the most out of your
ESP32 with articles from
the Tech Explorations Blog

Extracted from https://techexplorations.com
Page 1

https://techexplorations.com

Welcome to this special collection of articles,
meticulously curated from the Tech Explorations blog
and guides. As a token of appreciation for joining our
email list, we offer these documents for you to
download at no cost. Our aim is to provide you with
valuable insights and knowledge in a convenient
format. You can read these PDFs on your device, or
print.

Please note that these PDFs are derived from our blog
posts and articles with limited editing. We prioritize
updating content and ensuring all links are functional,
striving to enhance quality continually. However, the
editing level does not match the comprehensive
standards applied to our Tech Explorations books and
courses.

We regularly update these documents to include the
latest content from our website, ensuring you have
access to fresh and relevant information.

Extracted from https://techexplorations.com
Page 2

License statement for the PDF documents on this
page

Permitted Use: This document is available for both educational
and commercial purposes, subject to the terms and conditions
outlined in this license statement.

Author and Ownership: The author of this work is Peter
Dalmaris, and the owner of the Intellectual Property is Tech
Explorations (https://techexplorations.com). All rights are
reserved.

Credit Requirement: Any use of this document, whether in part
or in full, for educational or commercial purposes, must include
clear and visible credit to Peter Dalmaris as the author and Tech
Explorations as the owner of the Intellectual Property. The credit
must be displayed in any copies, distributions, or derivative
works and must include a link to https://techexplorations.com.

Restrictions: This license does not grant permission to sell the
document or any of its parts without explicit written consent
from Peter Dalmaris and Tech Explorations. The document
must not be modified, altered, or used in a way that suggests
endorsement by the author or Tech Explorations without their
explicit written consent.

Liability: The document is provided "as is," without warranty of
any kind, express or implied. In no event shall the author or
Tech Explorations be liable for any claim, damages, or other
liability arising from the use of the document.

By using this document, you agree to abide by the terms of this
license. Failure to comply with these terms may result in legal
action and termination of the license granted herein.

Extracted from https://techexplorations.com
Page 3

It feels and works like an Arduino, but…
WOW!
INTRODUCTION TO THE ESP32 GUIDE SERIES

It feels and works like an
Arduino, but… WOW
My New Favourite Microcontroller

Imagine an Arduino that fits snugly on a breadboard, has more
memory, more pins, more speed, more communications
(including WiFi, Bluetooth Classic, and BLE), but costs less than
an Arduino Uno.

Extracted from https://techexplorations.com
Page 4

Imagine an Arduino that fits snugly on a breadboard, has more
memory, more pins, more speed, more communications
(including WiFi, Bluetooth Classic, and BLE), but costs less than
an Arduino Uno. Because it is an Arduino, you can program like
you would program an Arduino Uno. Cool?You can use the
familiar and simple Arduino IDE. You old sketches will work,
and so will your favourite libraries.Only, this is not an
Arduino…

Extracted from https://techexplorations.com
Page 5

The ESP32 is my new favourite microcontroller. It features an
excellent balance of performance and price.

It’s the ESP32, from Espresif.

ESP32 is the successor to the ESP8266. The ESP8266 is a
board that introduced the idea that a microcontroller with
ample processing power and wireless connectivity at an
insanely low cost is possible.

The ESP32 took all the awesome features of the ESP8266,
improved on them, and added many more (like Bluetooth).

What I really like about the ESP32 though, is that its a mature
product.

While the ESP8266 was, infamously, painful to work with for
most people familiar with the Arduino, the ESP32 is a pleasure
with which to work.

In addition, while the ESP8266 was plagued, in my experience,
with reliability issues and felt experimental, the ESP32 is rock
solid.

Extracted from https://techexplorations.com
Page 6

https://www.espressif.com/
https://en.wikipedia.org/wiki/ESP8266

Espressif has done a remarkable job in implementing ESP32
support within the Arduino IDE.

And the hardware itself is super-reliable. I have one of my IoT
prototypes working flawlessly for over two months now,
without losing a beat.

What this means for you is simple: If you know how to use an
Arduino Uno, you can use an ESP32.

Why would you want to use an ESP32? Because it can
transform the scope of your projects while actually spending
less money on hardware.

I have been using the ESP8266 for a few years now, but I
never actually committed to it. I found it clunky, and I did not
have the time to deal with its frequent problems.

The ESP32 changed this.

I started using it as my exclusive prototyping board in January
2019. I was blown away by how easy it was to transition to this
board from the Arduino Uno.

Make no mistake: I still love the Arduino Uno and it is my go-to
board for teaching electronics and programming.

But as a Maker, the ESP32 is my new favorite.

Since I focused on the ESP32, I have used it for several
projects, including a heart rate monitor, and an Internet of
Things gadget that can respond to my voice.

A couple of things impressed me during this time:

How quick it was for me to start working
with the ESP32.
How quick prototyping was, once I got
started.

Extracted from https://techexplorations.com
Page 7

How I felt liberated from the Arduino Uno
limitation; this liberation opened up my
project horizons.

Let me show you what I mean with a quick example. Say that
you want to connect your project to the Internet, and send out
some sensor data. Here’s how to do this in an ESP32, using the
Arduino IDE.

Oh, and we’ll use secure communications, because it is 2019.

You can see the full sketch here, but below I provide the
highlights.

At the header, include the secure Wifi client library. This library
ships with the ESP32-Arduino core for the Arduino IDE:

#include <WiFiClientSecure.h>

Provide the credentials to your Wifi network:

const char* ssid = “<your wifi network name>”; const char*
password = “<your wifi network password>”;

Provide the target site root certificate (I only show the first
three lines here, and extracting this certificate from your
target website is very easy):

const char* test_root_ca= “—–BEGIN CERTIFICATE—–n”
“MIIDdzCCAl+gAwIBAgIEAgAAuTANBgkqhkiG9w0BAQUFADBaM
QswCQYDVQQGEwJJn”
“RTESMBAGA1UEChMJQmFsdGltb3JlMRMwEQYDVQQLEwpDeWJ
lclRydXN0MSIwIAYDn”
“VQQDExlCYWx0aW1vcmUgQ3liZXJUcnVzdCBSb290MB4XDTA
wMDUxMjE4NDYwMFoXn”
“DTI1MDUxMjIzNTkwMFowWjELMAkGA1UEBhMCSUUxEjAQBgN
VBAoTCUJhbHRpbW9yn”
“ZTETMBEGA1UECxMKQ3liZXJUcnVzdDEiMCAGA1UEAxMZQmF
sdGltb3JlIEN5YmVyn”

Extracted from https://techexplorations.com
Page 8

https://github.com/futureshocked/ESP32-For-Busy-People-1/blob/master/10-040_HTTPS_client_LED_control/10-040_HTTPS_client_LED_control.ino

“VHJ1c3QgUm9vdDCCASIwDQYJKoZIhvcNAQEBBQADggEPADC
CAQoCggEBAKMEuyKrn”
“mD1X6CZymrV51Cni4eiVgLGw41uOKymaZN+hXe2wCQVt2yg
uzmKiYv60iNoS6zjrn”
“IZ3AQSsBUnuId9Mcj8e6uYi1agnnc+gRQKfRzMpijS3ljwumUNK
oUMMo6vWrJYeKn”
“mpYcqWe4PwzV9/lSEy/CG9VwcPCPwBLKBsua4dnKM3p31vjsuf
FoREJIE9LAwqSun”
“XmD+tqYF/LTdB1kC1FkYmGP1pWPgkAx9XbIGevOF6uvUA65e
hD5f/xXtabz5OTZyn”
“dc93Uk3zyZAsuT3lySNTPx8kmCFcB5kpvcY67Oduhjprl3RjM71
oGDHweI12v/yen”
“jl0qhqdNkNwnGjkCAwEAAaNFMEMwHQYDVR0OBBYEFOWdWT
CCR1jMrPoIVDaGezq1n”
“BE3wMBIGA1UdEwEB/wQIMAYBAf8CAQMwDgYDVR0PAQH/BA
QDAgEGMA0GCSqGSIb3n”
“DQEBBQUAA4IBAQCFDF2O5G9RaEIFoN27TyclhAO992T9Ldcw
46QQF+vaKSm2eT92n”
“9hkTI7gQCvlYpNRhcL0EYWoSihfVCr3FvDB81ukMJY2GQE/szKN
+OMY3EU/t3Wgxn”
“jkzSswF07r51XgdIGn9w/xZchMB5hbgF/X++ZRGjD8ACtPhSNz
kE1akxehi/oCr0n”
“Epn3o0WC4zxe9Z2etciefC7IpJ5OCBRLbf1wbWsaY71k5h+3zv
Dyny67G7fyUIhzn”
“ksLi4xaNmjICq44Y3ekQEe5+NauQrz4wlHrQMz2nZQ/1/I6eYs9
HRCwBXbsdtTLSn”
“R9I4LtD+gdwyah617jzV/OeBHRnDJELqYzmpn” “—–END
CERTIFICATE—–n”;

Create a secure client object:

WiFiClientSecure client;

In setup() , connect to your Wifi network:

WiFi.begin(ssid, password);

And in loop(), first set the root certificate for the connection to
the remote server:

Extracted from https://techexplorations.com
Page 9

client.setCACert(test_root_ca);

… and connect:

client.connect(server, 443)

You are now connected, and you can transmit data securely
using client.println(), or receive using client.read().

Because the ESP32 dedicates a full core to running the radio
components and has cryptographic hardware acceleration, the
Wifi and secure web functions happen seamlessly for your
sketch. Your sketch is running in its own full-speed core, at full
speed, not losing a beat.

That is one less thing for me to worry about.

At this point, you might be thinking “That’s cool, I want to
jump right in and use the ESP32 in my project NOW!”.

Well, that was my approach

I did learn that there are several similarities, but also
differences between the ESP32 and my familiar Arduino Uno. I
discovered that knowing what those are upfront would have
made my work with the ESP32 easier, and my prototyping
faster.

I am going to discuss those differences and similarities in the
next article.

In the next article I also want to show you another cool thing
that you can do with the ESP32, that is a stretch for the
Arduino Uno.

In the meantime, do you have any questions about the ESP32
that you’d like to ask me? Just post it below.

Extracted from https://techexplorations.com
Page 10

From the Arduino Uno to the ESP32; Maker
transformation
INTRODUCTION TO THE ESP32 GUIDE SERIES

From the Arduino Uno to
the ESP32: Maker
transformation
In this article, I’ll go over the differences and similarities
between the Arduino and the ESP32, as well as show you an
example of something cool you can do with the ESP32 and
how simple it is to do it almost straight away.

Extracted from https://techexplorations.com
Page 11

In the previous article, I wrote about the ESP32 and how
impressed I am with what I have been able to do with it since I
started using it in my projects a few months ago.

I wrote about how the ESP32, the successor of the ground-
breaking ESP8266, did everything right for Arduino Makers:
processing power, communications options, form factor,
compatibility with the Arduino ecosystem and the Arduino IDE,
and, of course, the price.

In the previous article, I promised to discuss the differences
and similarities between the Arduino and the ESP32. I will give
a summary of this in this article (see below).

I also promised that I’d give you another example of
something cool you can do with the ESP32, and how easy it is

Extracted from https://techexplorations.com
Page 12

https://techexplorations.com/guides/esp32/begin/wow/
https://en.wikipedia.org/wiki/ESP8266
https://techexplorations.com/guides/esp32/begin/wow/

to do that almost out of the box. And, yes, I’ll do that in this
article too (see below).

Before I get to the technical stuff, I want to say this: soon after
I started working with the ESP32, I started feeling liberated
from the shackles of the Arduino Uno. While the Uno is the
perfect board for the beginner, its limitations are apparent as
soon as you decide to build an IoT application or something
that combines displays, sensors, communications, and a basic
user interface.

Yes, there are many other boards that I could use instead of
the ESP32. But none of those I played with seemed right. Their
price was too high, or something important was missing from
their hardware, or they were too different from the familiar
Arduino sketching paradigm, or I had to use its manufacturer’s
infrastructure to make it work.

This ESP32 opened up my project horizons.

I believe that after your first steps with the ESP32, you will also
feel liberated. Your project horizons will also open.

Now, I’d like to make a quick comparison between the Arduino
and the ESP32. Since more Arduino Makers are familiar with
the Arduino Uno, I will focus on Arduino Uno VS ESP32, but this
comparison holds true for most Arduino boards.

Extracted from https://techexplorations.com
Page 13

These two don’t have much in common.

Here’s the thing: These two are totally different.

Not only they look different, but their architecture is also
totally different, and they have a different hardware
architecture.

Their built-in capabilities are very different.

Memory and storage, the processing capacity, the number of
GPIOs that they expose, the communications features and
much more; these are very different microcontrollers.

In terms of features, the closest Arduino boards that are
comparable to the ESP32 are probably the Arduino MKR1010,
the Arduino 101 or the Arduino Zero. At least, these Arduinos
have integrated Wi-Fi and Bluetooth, and comparable
computational capacity.

Because the Arduino Uno and the ESP32 are so different in
terms of hardware, it doesn’t make sense to compare them
that way. It makes more sense to write about the use cases of
each one.

Here’s what I think:

Extracted from https://techexplorations.com
Page 14

https://store.arduino.cc/usa/mkr-wifi-1010
https://store.arduino.cc/usa/arduino-101
https://store.arduino.cc/usa/arduino-zero

Is the ESP32 right for you?

Well, it’s definitely not for beginners. If you are not familiar
with the Arduino, the ESP32 will be a complex board to learn. I
don’t recommend it.

The ESP32 provides a perfect opportunity for Arduino Makers
to extend and expand on their skills. The hardware that the
ESP32 contains means that you can work on more exciting
projects and that alone is very desirable.

I find that the ESP32 is better value than comparable Arduino
boards, like the MKR1000/1020 and the Arduino Zero.

Who is the Arduino Uno for?

I think that the Arduino is a much better choice for new
makers.

It’s simple.

It’s more forgiving, as well, to problems in wiring and mistakes
in wiring.

It’s easier to set up.

In summary, if you are a new Maker, learn using the Arduino
Uno. Then move on to the ESP32.

Now, I want to show you something really cool. As you
probably know, the Arduino Uno doesn’t have the ability to
generate a true analog signal. It can create the effect of an
analog signal via Pulse Width Modulation.

The ESP32 can generate PWM output, of course. Almost all of
its pins are PWM-capable. And it can do that with far more
programmable control of the PWM signal parameters than
what is possible to do with the Arduino.

But the ESP32 can also generate true analog output because it

Extracted from https://techexplorations.com
Page 15

contains two 8-bit DACs: Digital to Analog Converter. You can
access those two DACs (channels) via two of the GPIOs (25 and
26).

Let’s see how easy it is to create a true analog signal.

Example 1: Let’s create a flat waveform on GPIO 25 (this is
DAC channel 1). The DAC resolution is 8 bits, so let’s “write”
decimal 127 to GPIO25.

It’s this easy:

dacWrite(25,127);

Value 127 is in the middle of the range of possible values
0..255, so the result of “dacWrite(25,127);” is around 1.65V
measured on GPIO25 (assuming that the supply voltage is
3.3V).

We can take this one step further and create an actual sine
wave:

for (int deg = 0; deg < 360; deg++) dacWrite(25, int(128 + 80
* (sin(deg*PI/180)))); // Sine wave

This example will generate a sine wave on GPIO25. If you
connect an oscilloscope on that pin, you will see this
visualization of the signal:

Extracted from https://techexplorations.com
Page 16

A sine wave, calculated during run-time on the ESP32.

The ESP32 is fast enough to be able to calculate the waveform
in runtime, so you don’t have to create lookup tables in
memory. And if you enjoy math, you can develop
mathematical expressions to generate arbitrary waveforms.

In the next article in this series, I will write about my
experience of using the ESP32 to make this gadget:

Extracted from https://techexplorations.com
Page 17

Something I made to help me learn the ESP32.

My motivation for working on this gadget was to learn the
ESP32 in a real-world setting. I wanted something to help me
explore as many elements of hardware as possible.

This project helped me learn how to build a system around the
ESP32 that integrates environment sensing, an Internet clock,
appliance voice control via IFTTT and Google Assist, a touch
TFT display for the user interface, and the use of many of the
ESP32 features such as the SPI File System, Wifi, timer, and
more, with an efficient program design.

Checkout the next article in this series with more information
about my pet project

Peter

PS. In the meantime, do you have any questions about the
ESP32 that you’d like to ask me? Just post them below.

Extracted from https://techexplorations.com
Page 18

My first ESP32 project experience
INTRODUCTION TO THE ESP32 GUIDE SERIES

My first ESP32 project
experience: What was it
like?
In this article, I am writing about my experience in using the
ESP32 in one of my pet projects.

Extracted from https://techexplorations.com
Page 19

I’m very excited

In the last two articles (first and second), I wrote about the
ESP32 and how it opened up new learning and project
possibilities for me.

In the first article, I wrote about why I am impressed by the
ESP32 hardware and its integration with the Arduino
ecosystem. I also showed you an example of how easy it is to
do secure web communications with the ESP32, something
impossible to do with the Arduino Uno without expensive
external hardware.

And in the second article, I compared the Arduino with the
ESP32 and gave you another example of ESP32 awesomeness:
Digital to Analog Conversion, and how easy it is to generate an
arbitrary true analog signal.

My work with the ESP32 begun in January 2019, after playing
around with the ESP8266 for a few years before this. I never
committed to the ESP8266 because I felt it wasn’t ready.
Software integration with the Arduino ecosystem was clunky,
and the hardware was unreliable.

All this has changed with the ESP32. It works very well with the
Arduino ecosystem, and in my long-running experiments, it
has been rock-solid.

In this article, I am writing about my experience in using the
ESP32 in one of my pet projects.

It’s this one:

Extracted from https://techexplorations.com
Page 20

https://mpl-publisher.com/guides/esp32/begin/wow/
https://mpl-publisher.com/guides/esp32/begin/transformation/
https://mpl-publisher.com/guides/esp32/begin/wow/
https://techexplorations.com/guides/esp32/begin/transformation/

Something I made to help me learn the ESP32.

I started work on this gadget because I wanted to learn the
ESP32. I believe in project-based learning, so there you go

This project helped me learn how to build a system around the
ESP32 that integrates environment sensing, an Internet clock,
appliance voice control via IFTTT and Google Assistant, a touch
TFT display for the user interface, and the use of many of the
ESP32 features such as the SPI File System, Wifi, timers, and
more, with an efficient program design.

Right off the bat, I can say that this is something not possible
to do on the Arduino Uno. Just the storage footprint of the
sketch is more than what the Arduino can hold. I would need to
expand the Arduino’s flash memory with an external flash
module.

Speaking of storage, in my ESP32 project, I used the
integrated SPI File System it provides an efficient way to store
files (flat text files, images, HTML files, or anything else you
like) in the ESP32 flash memory. The basic file operations are

Extracted from https://techexplorations.com
Page 21

https://techexplorations.com/podcast/stemiverse-0044-celinda-corsini/
https://ifttt.com/
https://assistant.google.com/
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/storage/spiffs.html

possible via simple functions. In the Arduino Uno, I would need
to use an external SD card module, adding to the complexity
of the hardware.

Supporting the large TFT screen is possible on the Arduino Uno
via the SPI interface; however, the refresh rates would be low.
Adding the touch capability would make the user interface
slow and unresponsive.

You can read more details about this project on my blog (here,
here, and here).

I want to focus on the experience.

Rapid

Prototyping

Fun

As a Maker, subconsciously, I operate in a fine balance
between reaching a goal (getting my gadget to a state where
it works reliably) and dealing with the constraints of my
hardware, software, and my knowledge and skills.

With the Arduino, those constraints are particularly tight.

You know: memory, processing, communications, pins, etc.

I’ve been working with the Arduino for many years, and I know
that when I run out of hardware resources, there are things I
can do to make it go further. I can optimize memory use. I can
multiplex pins and communications. I can remove libraries and
replace them with optimized, custom code.

But as a hobbyist, this kind of work conflicts with my
psychological need to achieve my goal. Unless these
optimizations are the goal, they impact the enjoyment that
comes out of making something new and achieving the goal.

Extracted from https://techexplorations.com
Page 22

https://techexplorations.com/blog_esp32-iot-project-update-3/
https://techexplorations.com/blog_esp32-iot-project-update-4/
https://mpl-publisher.com/blog_esp32-iot-project-update-5/

Does this “sound” familiar?

Velocity in making, learning,and progress is important.

With the ESP32, I didn’t have to make such compromises.

Except for trying to use HTTPS REST communications (I
learned first hand that MQTT is a much better protocol for IoT
applications), I was able to reach every single milestone that I
set in this project.

And it was fun.

The ESP32 is the perfect higher-end microcontroller for the
Arduino Maker.

But, in my experience, it isn’t a zero-effort proposition. You will
still need to do some learning.

I have good news and good news

First “good news”: As an Arduino Maker, you already know the
bulk of what you need to start using the ESP32 in your
projects.

Second “good news”: For the rest, I can help you. I have
completed work on a new course, that I named “ESP32 for
Busy People”. In this course, I show you how to use the ESP32
in your projects. I assume that you are already familiar with
the Arduino, and help you reach a skill level where the ESP32
is the primary microcontroller for your projects.

If you are familiar with my course, Arduino Step by Step
Getting Started, and Arduino Step by Step Getting Serious,
then you know what “ESP32 For Busy People” is like; it is a
comprehensive course and recipe resource for Makers.

If you want to learn more about ESP32 For Busy People, click
here.

Extracted from https://techexplorations.com
Page 23

https://en.wikipedia.org/wiki/Representational_state_transfer
https://mqtt.org/
https://mpl-publisher.com/product/esp32fbp/
https://mpl-publisher.com/product/esp32fbp/
https://mpl-publisher.com/product/esp32fbp/
https://mpl-publisher.com/product/esp32fbp/
https://techexplorations.com/so/esp32fbpev/

Peter

PS. Do you have any questions about the ESP32 or the course
that you’d like to ask me? If you post your question in the next
few hours, I will try to respond within 24h.

Just post your question below.

Ready for some serious learning?

Enrol to

ESP32 for Busy People

This is our comprehensive ESP32 course for Arduino Makers.

It’s packed with high-quality video, mini-projects, and
everything you need to learn Arduino from the ground up.

Just click on the big red button to learn more.

Learn more

Extracted from https://techexplorations.com
Page 24

https://techexplorations.com/so/esp32fbpev/

The ESP32 module
Introduction to the ESP32 guide series

The ESP32 module
In this lesson, you will learn about the ESP32 module that
powers the development kit that I am using in this series of
lessons, and the video course.

In this lesson, you will learn about the ESP32 module that
powers the development kit that I am using in this series of
lessons, and the video course.

Extracted from https://techexplorations.com
Page 25

You can watch the video, or if you are the “reading” type, you
can read the text below.

The ESP32 WROOM32 module
In the photo below, the ESP32 module is indicated by the
arrow, and it dominates the surface of the development kit.
There are several variants of the ESP32 module (more about
this below). The once used in the ESP32 DevKit v4 that I will be
using in these lessons and course is the WROOM32.

In general, keep in mind that “ESP32” is a generic reference
name. We use it to refer to all the ESP32 module models and
even the dev kits. It’s a bit like saying “Arduino,” meaning the
Arduino family of boards, not a specific board.

Extracted from https://techexplorations.com
Page 26

The ESP32 DevKit v4 contains the ESP32 WROOM32 module.

Drilling further into the module, we learn that the WROOM32
module contains the ESP32 D0WDQ6 microcontroller chip.

There’s also another variant, the ESP32 WROOM32D, which
contains a slightly different chip that powers it, and there’s
also the WROVER modules, such as the ESP32 WROVER-IB
which also contains at ESP32 D0WD chip but with additional
memory, and many many more.

Extracted from https://techexplorations.com
Page 27

Some of the ESP32 module models

Each of those modules and chip combinations has its own
characteristics, and it’s optimized for a particular purpose.
Typically, the variation has to do with how much memory is
available, whether or not there is pseudo-static RAM, the kind
of antenna that they use, or whether they use a single or a
dual-core processor, and so on.

The module in the development kit that I’ll be using in this
course has got a chip with a “D” in its name, which denotes
“dual core.”

My dev kit contains the ESP32 WROOM32 module, which, in
turn, contains the ESP32 D0WDQ6 chip. This chip provides four
megabytes of flash memory that we can use to store our
programs and data. It contains no pseudo-static RAM, and it
has a “MIFA” antenna. “MIFA” stands for “meandered inverted
F” antenna.

Extracted from https://techexplorations.com
Page 28

https://docs.espressif.com/projects/esp-idf/en/latest/hw-reference/modules-and-boards.html#wroom-solo-and-wrover-modules
https://en.wikipedia.org/wiki/Dynamic_random-access_memory#PSRAM
https://en.wikipedia.org/wiki/Inverted-F_antenna

The ESP32 WROOM32 MIFA antenna.

You can see the antenna at the top edge of the board with its
zigzag pattern (see photo above). This antenna is a good fit for
the ESP32 because of the small amount of available board
space allocated to the antenna. We want this antenna to be
etched on the PCB itself, instead of having to connect an
external component for the antenna. And because there’s not
much space on the board, a MIFA antenna uses a meander
shape, so that we end up with a full electrical length antenna
that fits at this small available space.

Extracted from https://techexplorations.com
Page 29

The ESP32 WROOM32 D and U
The ESP32 WROOM32-D and ESP32 WROOM32-EU variants
also contain the D0WDQ6.

These still have four-megabyte flash memory, and no pseudo-
static RAM. The D model still has an integrated MIFA antenna.

But the “U” model has a connector that allows us to connect
an external antenna.

In addition, both of those variants are smaller than the
“regular” ESP32 WROOM32.

The WROOM-32D and WROOM-32U modules

The ESP32 WROVER
The WROVER variant is also more powerful compared to the
WROOM models.

In summary, they have the same amount of flash as the
WROOM modules. They contain SPI pseudo-static RAM
(WROOM models have none).

Extracted from https://techexplorations.com
Page 30

They are available with an integrated MFA antenna or an
external USFL antenna, and they have variants that can
operate with as low as one point eight volts and up to one
hundred and forty-four megahertz of clock speed.

The ESP32 WROVER modules

The ESP32 block diagram
Below, you can see the ESP32 D0WDQ6 module block diagram.
It provides a map of all the hardware that is embedded in this
microcontroller. In a sense, this diagram provides a summary
of the module’s capabilities.

Extracted from https://techexplorations.com
Page 31

https://mpl-publisher.com/media/File:Espressif_ESP32_Chip_Function_Block_Diagram.svg

The ESP32 D0WDQ6 module block diagram

At the center, you can see the two XTENSA LX6
microprocessors, with the ROM and static RAM.

At the top left of this diagram, you can see the radio hardware,
including the Wi-Fi and Bluetooth. On the right side is the
embedded flash memory, where we store our programs and
other data and files; the peripheral interfaces, I2C, and SPI,
among many others.

There’s also cryptographic hardware acceleration so that we
can use TLS and SSL encryption when we are communicating
with the Internet.

And, there is also a low power management system subsystem
down the bottom left of this diagram.

Conclusion
To wrap this lesson, see below a summary of the hardware
features of the ESP32 D0WDQ6.

Extracted from https://techexplorations.com
Page 32

A summary of the hardware features of the ESP32 D0WDQ6

Go on to the next lecture and have a look at the ESP32
development kit.

Ready for some serious learning?

Enrol to

ESP32 for Busy People

This is our comprehensive ESP32 course for Arduino Makers.

It’s packed with high-quality video, mini-projects, and
everything you need to learn Arduino from the ground up.

Just click on the big red button to learn more.

Learn more

Extracted from https://techexplorations.com
Page 33

https://techexplorations.com/so/esp32fbpev/
peter
Cross-Out
Jump to another article
It feels and works like an Arduino, but… WOW

The ESP32 Development Kit
Introduction to the ESP32 guide series

The ESP32 Development
Kit
In this lesson, you will learn about the ESP32 “DevKit” or
“developing kit.” At the time I am writing this, the latest
development kit from Espressif is version four.

In this lesson, you will learn about the ESP32 “DevKit” or
“developing kit.” At the time I am writing this, the latest
development kit from Espressif is version four.

You can watch the video, or if you are the “reading” type, you
can read the text below.

In the image here, you can see the ESP32 and the
development kit on which the ESP32 module is situated.

Extracted from https://techexplorations.com
Page 34

The ESP32 DevKit version 4

The ESP32 dev kit exposes the ESP module’s pins (at least
some of those) to the outside world. Thanks to the dev kit, we
can use the ESP32 by plugging it to a breadboard, or even
attaching wires directly to its pins, without having to worry
about implementing our own power, USB communications,
reset circuit, etc.

Development kit core features and
hardware
The core hardware that is present on the developing kit are
things such as the USB-to-serial programming interface, the
power subsystem that allows us to provide power within
module push buttons for reset, and for setting it to the upload
mode, indicator LCDs and a few other things.

So in this image below, I’ve marked with numbers the most
important features of the ESP32 dev kit.

Extracted from https://techexplorations.com
Page 35

The ESP32 DevKit v4 core features

You can see:

The USB connector, which is also the way1.
that we provide power to the ESB module
and upload programs and also communicate
with a serial monitor. It is a micro-USB port.
The reset pushbutton. We use this button to2.
reset the module and restart the execution
of a sketch that is already uploaded.
The “Enable” pushbutton. We use this3.
button to place the module to upload mode.
Variations of the development kit can place
themselves into upload mode automatically,
just like an Arduino can when connected to
the Arduino IDE. The board I use in this
guide does not, so I press button 3
immediately after I click on the “Upload”
button in the Arduino IDE.
The power-on LED. As long as your ESP32 is4.

Extracted from https://techexplorations.com
Page 36

powered, that LCD will be on.
The two rows of headers marked five here in5.
this photo. These pins break out the pins
from the ESP32 module so that they become
compatible with the breadboard. This is
another really nice aspect of the ESP32
development kit as opposed to the Arduino:
The fact that the development kit is
compatible with the breadboard.
A programmable LED, which, in the case of6.
my development board, is attached to GPIO
2. Be aware that not all development kits
have this programmable LED. If yours
doesn’t have it, simply connect an external
LED to GPIO 2, and you’ll have the exact
same functionality.

USB communication and power regulator
The square chip right above the USB connector is responsible
for the UCB communications.

Above and to the right of the USB chip is another chip with four
pins. This is the voltage regulator, which allows us to connect a
voltage source from 5 to 12 V to the dev kit. You can learn
more about the power options that you have with the ESP32
module in another lesson in this introductory series.

Other development kits
Before you move to the next lesson, I also wanted to mention
that there is a variety of other development boards that host
the ESP32 module.

Extracted from https://techexplorations.com
Page 37

For example, there is the ESP32 Lyra and the ESP32 Pico. Go
ahead to learn more about them.

There is a variety of ESP32 Dev Kits.

A “naked” ESP32 module
If you remove the cover, it reveals the bare module (don’t
remove the cover unless you are prepared to break your
ESP32 module).

Zoom in, and you can see the two integrated circuits in it.

Extracted from https://techexplorations.com
Page 38

http://docs.espressif.com/projects/esp-idf/en/latest/hw-reference/modules-and-boards.html
http://docs.espressif.com/projects/esp-idf/en/latest/hw-reference/modules-and-boards.html

The ESP32 WROOM32 without its cover

Photo of ESP32-D0WDQ6 by Brian Krent – Own work, CC BY-SA
4.0,
https://commons.wikimedia.org/w/index.php?curid=57745131

The larger one (this one here) is the ESP32 D0WDQ6
microcontroller, and the slightly smaller chip right here is the

Extracted from https://techexplorations.com
Page 39

https://commons.wikimedia.org/w/index.php?curid=57745131
https://commons.wikimedia.org/w/index.php?curid=57745131

SPI flash memory.

So now you know what is beneath the cover.

Continue to the next lecture where you will learn about the
differences and similarities between the ESP32 and the
Arduino.

Ready for some serious learning?

Enrol to

ESP32 for Busy People

This is our comprehensive ESP32 course for Arduino Makers.

It’s packed with high-quality video, mini-projects, and
everything you need to learn Arduino from the ground up.

Just click on the big red button to learn more.

Learn more

Extracted from https://techexplorations.com
Page 40

https://techexplorations.com/so/esp32fbpev/

ESP32 vs Arduino
Introduction to the ESP32 guide series

The ESP32 compared to
the Arduino
In this lesson, you will learn about the differences and
similarities between the ESP32 and the Arduino and, in
particular, the Arduino Uno.

In this lesson, you will learn about the differences and
similarities between the ESP32 and the Arduino and, in
particular, the Arduino Uno.

You can watch the video, or if you are the “reading” type, you
can read the text below.

Extracted from https://techexplorations.com
Page 41

How similar (or different) are these two?
These two are totally different.

Not only they look different, but their architecture is also
totally different. They have different hardware architecture.
Their built-in capabilities are very different.

The ESP32 and the Arduino are very different creatures.

The amount of memory that they include, the processing
capacity, the number of GPIOs that they expose, the
communications features, and much more, are really different
between these two microcontrollers.

The closest Arduino boards that are comparable to the ESP32
are probably the Arduino 101 or the Arduino Zero.

At least those share some of the features that the ESP32 has,
such as integrated Wi-Fi and Bluetooth, and the computational
capacity. But even there, the difference differences are more
than the similarities.

Extracted from https://techexplorations.com
Page 42

Why is the ESP32 a good option for
Arduino makers?
What makes the ESP32 an excellent choice for people that are
familiar with the Arduino is the software.

Espressif, which is the company that designs and makes the
ESP32, has made a huge effort in writing software that bridges
the hardware gap between the ESP32 and the Arduino.

The ESP32-Arduino Core software bridges the hardware gap.

Thanks to the software, that we call as you’ll see later the
“ESP32-Arduino Core,” we can use the ESP32 as if we are
using the Arduino.

Thanks to the software, the ESP32 can be treated as being
compatible with the Arduino:

We can use the Arduino IDE as the
development environment.
We can use a programming language that
matches almost one-on-one with the
language that we have learned for the

Extracted from https://techexplorations.com
Page 43

Arduino.
And, to a large extent, we can reuse almost
90 percent of the Arduino libraries in
software that we write for the ESP32, which
is pretty amazing.

The Arduino IDE
The ESP32 works with the Arduino IDE with the installation of
the ESP32-Arduino Core and the integration between these
two is remarkable.

Once you install the ESP32-Arduino Core, you get access to a
large variety of development kits that are based on the ESP32,
and you also get a lot of example sketches.

To program the ESP32 you can use the Arduino IDE.

You can start using it right away.

Even when it comes to the libraries, most of the Arduino
libraries will just work with the ESP32, again because of the
ESP32 Arduino core software that Espresif has developed.

Extracted from https://techexplorations.com
Page 44

Of course, the ESP32 contains unique features that are not
present in the Arduino. To take advantage of those features,
such as the SPI file system (SPIFFS), Espressif has to provide
compatible libraries that we can use via the Arduino IDE. I
show how to use the SPIFFS in the course.

Who is the ESP32 for?
So who is the ESP32 for?

Well, it’s definitely not for beginners.

I’ve said this before: if you’re not familiar with the Arduino,
then the ESP32 will be complex. It will be a difficult thing to
learn, and I don’t recommend it.

I think that the Arduino is a much better choice for new
makers.

It’s a simpler device.

It’s simpler to program.

It’s more forgiving, as well, to problems and mistakes in the
wiring.

It’s more robust, so it’s easier to set up.

Extracted from https://techexplorations.com
Page 45

The ESP32 is perfect for Makers familiar with the Arduino.

When you work with an Arduino Uno, you can just download
the Arduino IDE, plug in your Arduino, and off you go. You
don’t have to make any modifications to it.

Once you’ve built up your knowledge and skill on the Arduino,
in particular on the Arduino Uno, then the ESP32 provides a
perfect opportunity to extend and expand on those skills.

The additional features that the ESP32 contains means that
you can work on more interesting projects and that alone is
very desirable.

You can start working with the ESP32 using your existing
Arduino skills.

There is no or very small learning curve.

Then anything else that you want to do on top of what you
already know means that you can improve your skills
incrementally and gradually, gently without much stress.

You also get Wi-Fi and Bluetooth and lots of memory,
essentially for free.

Extracted from https://techexplorations.com
Page 46

By “free,” I also mean the cost of the board.

The ESP32 dev kit is actually cheaper than Arduino Uno, which
means that you get a more powerful board for a lower price.

At the level where you use your existing Arduino skills to work
with the ESP32, you can treat the ESP32 as a supercharged
Arduino Uno: faster, better in many respects.

And when you feel confident and ready, you can actually move
away from the Arduino IDE to a completely integrated
development environment.

Ready to learn about the ESP32 GPIO’s? Go on to the next
lesson.

Ready for some serious learning?

Enrol to

ESP32 for Busy People

This is our comprehensive ESP32 course for Arduino Makers.

It’s packed with high-quality video, mini-projects, and
everything you need to learn Arduino from the ground up.

Just click on the big red button to learn more.

Learn more

Extracted from https://techexplorations.com
Page 47

https://mpl-publisher.com/guides/esp32/begin/gpio/
https://techexplorations.com/guides/esp32/begin/gpio/
https://techexplorations.com/so/esp32fbpev/

The ESP32 GPIOs
Introduction to the ESP32 guide series

The ESP32 GPIOs
In this lesson, you will learn the basics of the ESP32 GPIOs. You
will learn how to recognize the various names we use to refer
to them, and some of the functions that they expose.

In this lesson, you will learn the basics of the ESP32 GPIOs. You
will learn how to recognize the various names we use to refer
to them, and some of the functions that they expose.You can
watch the video, or if you are the “reading” type, you can read
the text below.

Which ESP32 pins are exposed via the
headers?
Most of the 38 pins of the ESP32 module are broken out in two
rows of pins in the ESP32 dev kit, but not all of them.

Extracted from https://techexplorations.com
Page 48

The ESP32 module and Dev Kit pins. Not all ESP32 pins are
broken out to the headers.

In the figure shown above, you can see the ESP32 WROOM-32
module positioned at the top of the dev it. Notice that the
module has three sides where pins are exposed. The fourth
side is where the antenna is placed.Most of the module pins
are broken out to the two headers of the dev kit, the left (J2)
and the right (J3) headers. In the same figure, you can see the
names of the broken out pins. For example, there are the
GPIOs (“General Purpose Input Output” pins), such as “IO43”
and “IO17.” Other names are used, too, such as “SENSOR_VP”
and “RXD0.”

How do we refer to ESP32 pins?
Almost all pins on the ESP32 are multipurpose, and hence we
can use several names that refer to the same physical pin.
That depends on what we want to do with a particular pin. In
this series and video course, I try to use the GPIO notation
exclusively, so I will be using, for example, “GPIO21” to refer
to physical pin 42 when I want to use it as the data pin of the
I2C interface.

You can find all the information you need about the ESP32 pins

Extracted from https://techexplorations.com
Page 49

and their roles in the WROOM-32 datasheet. In the figure
below, I have extracted part of the datasheet that contains the
pins I use most frequently.

An extract of the ESP32 datasheet, showing the roles and
names of several of its pins.

Notice how each of these pins exposes more than one
functions? Apart from the power pins, all of them are
multifunction.

Look at an example, such as GPIO34. This corresponds to
physical PIN 6. It’s an input by default, one of the analog to
digital converter channels and it also provides access to the
RTC GPIO4.

Try another example, like GPIO2, that is physical pin 24.This is
an input/output pin and has got multiple functionalities: apart
from just being GPIO2, it’s also an analog to digital converter
(ADC) pin channel 2, it exposes a touch sensor, and it’s also
part of the SPI hardware.

I keep a printout of this Figure handy so I can quickly check on
pin roles.

You can download your copy of the high-res version of this

Extracted from https://techexplorations.com
Page 50

https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32_datasheet_en.pdf
https://d296hllh7cc607.cloudfront.net/esp32/resources/ESP32%20For%20Busy%20People%20-%202.040%20-%20The%20ESP32%20GPIOs.jpeg

figure.

The ESP32 Dev Kit pin map
I have also developed the pin map that you can see below.
Feel free to download your copy, print it out and keep it handy
when you’re working with the ESP32 throughout this course.

The Tech Explorations ESP32 Dev Kit v4 pin map, with my
compliments

In this guide and in the video course, I make frequent
reference to this map as I find it easier and faster compared to
looking up this information in the datasheet. The map contains
the pin functions that I use most often.A quick example. Find
GPIO32 in the map. The map shows that this is physical pin 12
in the ESP module, and it give access to one of the touch
sensors, and to the analog to digital converter (ADC).Also, I
prefer to refer to pins using their GPIO numbers. In the map,
these numbers are contained in the yellow columns.

Datasheet summary table of GPIOs
Another document that I use often is this one here:

Extracted from https://techexplorations.com
Page 51

https://d296hllh7cc607.cloudfront.net/esp32/resources/ESP32%20For%20Busy%20People%20-%202.040%20-%20The%20ESP32%20GPIOs.jpeg
https://d296hllh7cc607.cloudfront.net/esp32/resources/EXP32%20For%20Busy%20People%20-%202.040%20-%20The%20ESP32%20dev%20kit%20pin%20map.jpeg

The GPIO role and naming summary from the ESP32
WROOM32 datasheet.

It comes out of the datasheet and it’s a summary of the
various functionalities that are exposed at each pin.

Ready for more? Go on to the next lesson and have a look at
the ESP32 communications capabilities.

Ready for some serious learning?
Enrol to

ESP32 for Busy People

This is our comprehensive ESP32 course for Arduino Makers.

It’s packed with high-quality video, mini-projects, and
everything you need to learn Arduino from the ground up.

Just click on the big red button to learn more.

Learn more

Extracted from https://techexplorations.com
Page 52

https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32_datasheet_en.pdf
https://techexplorations.com/so/esp32fbpev/

The ESP32 communications
Introduction to the ESP32 guide series

ESP32 Communications
options
In this lesson, you will learn about the various communications
capabilities of the ESP32, and specifically about
communications between sensors and integrated circuits, or
other devices such as mobile phones and the Internet.

In this lesson, you will learn about the various communications
capabilities of the ESP32, and specifically about
communications between sensors and integrated circuits, or
other devices such as mobile phones and the Internet.You can
watch the video, or if you are the “reading” type, you can read
the text below.

Extracted from https://techexplorations.com
Page 53

How does the ESP32 communicate with
its environment?
Most of the 38 pins of the ESP32 module are broken out in two
rows of pins in the ESP32 dev kit, but not all of them.

A summary of the communications options of the ESP32.

On the left, you’ve got the main wireless capabilities, namely
Wi-Fi and Bluetooth.

And on the right, you’ve got the wired capabilities, which allow
the ESP32 to be connected to either other ESP32 and
microcontrollers or smaller devices like sensors.

There are three SPI channels.

There are two I2C channels (“Inter-integrated circuit”), and
two I2S, which is a lesser-known communications technology.
I2S stands for “Inter IC for Sound,” and it’s an electrical serial
bus, just like the I2C, but typically used for connecting digital
audio devices.

We also have three serial interfaces, an Ethernet MAC
interface, a CAN bus (“Controller Area Network bus”), which is

Extracted from https://techexplorations.com
Page 54

https://en.wikipedia.org/wiki/Serial_Peripheral_Interface
https://en.wikipedia.org/wiki/I%C2%B2C
https://en.wikipedia.org/wiki/I%C2%B2S
https://en.wikipedia.org/wiki/Ethernet
https://en.wikipedia.org/wiki/CAN_bus

typically used in vehicle applications, automotive applications,
and allow microcontrollers and devices to communicate with
each other in cars.

And finally, there are hardware for infrared (“IR”) serial
communications.

Functional block diagram
You can see how these capabilities are laid out in the
functional block diagram below.

The ESP32 functional block diagram.

Let’s have a closer look at each one of these capabilities.

Wi-Fi is integrated into the module, and you find everything
that you need to use to connect to a Wi-Fi network or to
create a Wi-Fi hotspot.

There is the antenna circuit with an amplifier, various filters,
and power management.

As far as Wi-Fi protocols are concerned, there are 802.11 b, g,
and n. The 802.11n networking supposed up to one 150

Extracted from https://techexplorations.com
Page 55

Mbits/s bandwidth, with support for Wi-Fi multimedia.

You can find more details in the datasheet in Section 3.5.

For Bluetooth, the ESP32 is compliant with classic Bluetooth
4.2, and BLE (Bluetooth Low Energy) specifications.

It contains a Class 1 2 and 3 transmitters, and it can
simultaneously advertise and scan.

Again there are more details in the datasheet.

There are three SPI channels, up to 80 MHz in frequency. All of
them can go up to 80 MHz.

The ESP32 contains two full I2C bus interfaces, and they can
be configured to operate as a master or a slave, standard, or
fast mode.

We’ll be using I2C in the video course to connect the ESP32 to
things such as sensors, in particular, the BME280 and the LCD
screen with the I2C backpack.

There are also two I2S interfaces, which are typically used in
audio applications.

And of course, the ubiquitous UART (Universal asynchronous
receiver transmitter). Three of those interfaces are present.
We can use them with any serial device.

In addition to the above, there’s also the infrared receive and
transmit communication capability, and an Ethernet MAC
adapter so we can connect to a local ethernet network.

As you can see, the ESP32 is quite a lot of capabilities to
communicate with devices, near or far away via the Internet.

And we’ll be demonstrating most of these capabilities in this
course.

Extracted from https://techexplorations.com
Page 56

https://txplo.re/033e8
https://txplo.re/033e8

Now, let’s turn our attention to power. You will need to provide
power to your ESP32 somehow, and in the next lesson, you will
learn of three ways to do just that.

Extracted from https://techexplorations.com
Page 57

The ESP32 devkit power options
Introduction to the ESP32 guide series

ESP32 dev kit power
options
In this lesson, you will learn how to power your ESP32 dev kit.

In this lesson, you will learn how to power your ESP32 dev
kit.You can watch the video, or if you are the “reading” type,
you can read the text below.

Option 1: USB
The easiest way to power your ESP32 dev kit is to use the USB
port. The dev kit includes a micro USB port through which you
can both supply power to the board, and implement serial
communication with the host computer for uploading a sketch.

Extracted from https://techexplorations.com
Page 58

The easiest way to power your ESP32 dev kit is via the USB
port.

Just plug one end of the cable into your computer’s USB port or
to a USB compatible power, the other end to the USB port of
the ESP32 dev kit, and you’re good to go.

Option 2: Unregulated power to GND and
5V pins
The second option is to connect an external unregulated power
supply to the 5V pin and ground pins. Anything between
around 5 and 12 Volts should work.But it is best to keep the
input voltage to around 6 or 7 Volts to avoid losing too much
power as heat on the voltage regulator.

Extracted from https://techexplorations.com
Page 59

You can connect external power via the 5V and GND pins.
Beware of the voltage limits.

I did some experimentation using my bench power supply. I
supplied voltage between 5V and 10V and observed the
current draw. The ESP32 was running a sketch with an empty
loop.At 10V input voltage, the current draw was 0.099 A (or
99.9mA). At 5V, the current draw was a little higher, at 0.128 A
(or 128mA).

At 10V input voltage, the current draw was 99.9mA.

Extracted from https://techexplorations.com
Page 60

At 5V, the current draw was 128mA.

Option 3: Regulated power to GND and
3.3V pins
Another option that you have is to power your ESP32 is to use
a 3.3V regulated power supply. For this, you will use the 3.3
Volt and GND pins.

You can connect a regulated 3.3V voltage supply to the 3.3V
and GND pins.

Extracted from https://techexplorations.com
Page 61

The 3.3 volts pin is at the top left of the board right next to the
antenna.

You have to be very careful when you do that. If you power
your ESP32 this way, you’re bypassing the on-board voltage
regulator that is on board the dev kit, and therefore your
module has no protection against over-voltage.

Again: Be very careful to make sure that your input voltage on
the 3.3V pin is regulated and safe.

Power: conclusion
To power your ESP32 dev kit, you have three options:

Via the USB port.1.
Using unregulated voltage between 5V and2.
12V, connected to the 5V and GND pins. This
voltage is regulated on-board.
Using regulated 3.3V voltage, connected to3.
the 3.3V and GND pins. Be very careful with
that: do not exceed the 3.3V limit, or your
ESP32 module will be damaged.

Attention: be very, very careful to only use one of those
options at the same time.

For example, do not power your ESP32 dev kit via the 5V pin
using a 10V input while at the same time you have the module
connected to your computer via USB. This will surely damage
your module, and perhaps even your computer.

With this, you should have a good understanding of what the
ESP32 is, and you must be eager to get hands-on with it. I
totally understand :-). Let’s proceed with the next lesson,
where I’ll show you how to set up the ESP32-Arduino Core on
the Arduino IDE.

Extracted from https://techexplorations.com
Page 62

Setup ESP32 in the Arduino IDE (Mac)
Introduction to the ESP32 guide series

Setup the ESP32 on the
Arduino IDE (Mac OS)
In this lesson, you will learn how to set up your Arduino IDE on
Mac OS, so that you can use it to program your ESP32.

In this lesson, you will learn how to set up your Arduino IDE so
that you can use it to program your ESP32. This lesson
contains instructions for Mac users. If you use Windows, please
look at the Windows version of this lesson, also part of this
series.

You can watch the video, or if you are the “reading” type, you

Extracted from https://techexplorations.com
Page 63

can read the text below.

One of the really nice things about the “ESP32” is that it works
with the Arduino IDE.

Not only that, but because of the support that the
manufacturer has implemented for the Arduino platform, we
can use a lot of the existing Arduino libraries, infrastructure,
and hardware.

That means that we can reuse what we already know from our
work with the Arduino. We can build on that and make use of
all of the additional hardware capabilities that the ESP32
brings along.

To be able to use the Arduino IDE to program the ESP32, you
will need to install the ESP32-Arduino Core software. I will
show you how to do this now.

I assume that the Arduino IDE is already installed on your Mac.
If it isn’t, please install it now, and then continue (I’ll wait here,
it’s ok).

Download ESP32-Arduino Core
With the Arduino IDE installed and operating on your
computer, use your browser to download the ESP32 support
software from Github.

You can download these files an manually copy them into the
hardware folder of your Arduino IDE installation, but there is
an easier and safer way. You should use the Arduino IDE
Boards Manager. You can find instructions in Github (or just
continue reading).

Extracted from https://techexplorations.com
Page 64

https://www.arduino.cc/en/Main/Software
https://github.com/espressif/arduino-esp32

The Boards Manager utility in the Arduino IDE makes
installation easy and safe.

The IDE Boards Manager utility works across platforms. You
can use this method on Mac, Windows, or Linux.

Copy this URL:

https://raw.githubusercontent.com/espressif/ardu
ino-esp32/gh-pages/package_esp32_index.json

Open the Preferences window of the Arduino IDE, and paste
the URL you just copied in the “Additional Board Manager
URLs” field, as you can see in the figure below:

Extracted from https://techexplorations.com
Page 65

Copy the hardware definitions URL to the URLs field in the
Preferences window.

Click OK to dismiss the Preferences window.

Next, open the Board Manager utility by clicking Tools, Board,
Boards Manager in the IDE menu.

Extracted from https://techexplorations.com
Page 66

Bring up the Boards Manager utility.

Search for “ESP32” in the text box. A single result should
appear.Click on “Install” to do just that. In the Figure below,
the ESP32 support is already installed in my Arduino IDE, so
the “Install” button is inactive.

Search for the ESP32 module in the Boards Manager.

Extracted from https://techexplorations.com
Page 67

There are a few megabytes of file data to download and install,
so be patient.

Test the ESP32 support
A while later, when the utility completes the download and
installation of the software, confirm that the ESP32 support is
there.

In the Arduino IDE menu, click on Tools, Board, and scroll down
to see the new ESP32 section. There should be numerous
boards there. The one we are interested mostly about, is the
generic ESP32 Dev Module, like in the figure below. Click on
“ESP32 Dev Module” to select it, and make it the active target
in the IDE.

Extracted from https://techexplorations.com
Page 68

The ESP32 support software provides support for numerous
ESP32 boards.

Now that you have selected the ESP32 Dev Module confirm the
selection in the IDE window. The status line should contain the
text “EXP32 Dev Module,” as well as its various parameters,
like its frequency and flash memory size.

Extracted from https://techexplorations.com
Page 69

Yes, the ESP32 is the Arduino IDE programming target.

Let’s do one last test: load one of the example ESP32
sketches. In the IDE menu, select File, Examples, ESP32,
AnalogOut, ledcWrite_RGB. This is actually one of the sketches
we discuss in the video lecture.

Load the ledcWrite_RGB example sketch.

This sketch demonstrates how to create PWM output, and uses
functions that come with the ESP32-Arduino Core, and are not
available to the Arduino Uno. You can learn more about these
and other hardware-specific functions in the video course.

Extracted from https://techexplorations.com
Page 70

An ESP32 example sketch

This concludes the installation and verification of the Arduino
IDE support for the ESP32 board. If you want to learn how to
install the ESP32 support for Windows, check out the next
lesson.

If your ESP32 Dev Kit contains the CP21012 USB driver chip
(most lower-cost dev kits do), you will need to install the USB
driver on your computer before you can upload your first
sketch. You can learn how to do this in Lesson 9.

Extracted from https://techexplorations.com
Page 71

https://wp.techexplorations.com/guides/esp32/begin/idewin/
https://wp.techexplorations.com/guides/esp32/begin/idewin/
https://techexplorations.com/guides/esp32/begin/cp21xxx/

Setup ESP32 in the Arduino IDE (Windows)
Introduction to the ESP32 guide series

Setup the ESP32 on the
Arduino IDE (Windows
10)
In this lesson, you will learn how to set up your Arduino IDE on
Windows 10, so that you can use it to program your ESP32.

In this lesson, you will learn how to set up your Arduino IDE so
that you can use it to program your ESP32. This lesson
contains instructions for Windows users. If you use a Mac,
please look at Lesson 7.You can watch the video, or if you are

Extracted from https://techexplorations.com
Page 72

the “reading” type, you can read the text below.

One of the really nice things about the ESP32 is that it works
with the Arduino IDE.

Not only that, but because of the support that the
manufacturer has implemented for the Arduino platform, we
can use a lot of the existing Arduino libraries, infrastructure,
and hardware.

That means that we can reuse what we already know from our
work with the Arduino. We can build on that and make use of
all of the additional hardware capabilities that the ESP32
brings along.

To be able to use the Arduino IDE to program the ESP32, you
will need to install the ESP32-Arduino Core software. I will
show you how to do this now.

I assume that the Arduino IDE is already installed on your PC. If
it isn’t, please install it now, and then continue (I’ll wait here,
it’s ok).

Download ESP32-Arduino Core
With the Arduino IDE installed and operating on your
computer, use your browser to download the ESP32 support
software from Github.

You can download these files an manually copy them into the
hardware folder of your Arduino IDE installation, but there is
an easier and safer way. You should use the Arduino IDE
Boards Manager. You can find instructions in Github (or just
continue reading).

Extracted from https://techexplorations.com
Page 73

https://www.arduino.cc/en/Main/Software
https://github.com/espressif/arduino-esp32

The Boards Manager utility in the Arduino IDE makes
installation easy and safe.

The IDE Boards Manager utility works across platforms. You
can use this method on Mac, Windows, or Linux.

Copy this URL:

https://raw.githubusercontent.com/espressif/ardu
ino-esp32/gh-pages/package_esp32_index.json

Open the Preferences window of the Arduino IDE, and paste
the URL you just copied in the “Additional Board Manager
URLs” field, as you can see in the figure below:

Extracted from https://techexplorations.com
Page 74

Copy the hardware definitions URL to the URLs field in the
Preferences window.

Click OK to dismiss the Preferences window.

Next, open the Board Manager utility by clicking Tools, Board,
Boards Manager in the IDE menu.

Extracted from https://techexplorations.com
Page 75

Bring up the Boards Manager utility.

Search for “ESP32” in the text box. A single result should
appear.

Click on “Install” to do just that. In the Figure below, the ESP32
support is already installed in my Arduino IDE, so the “Install”
button is inactive.

Extracted from https://techexplorations.com
Page 76

Search for the ESP32 module in the Boards Manager.

There are a few megabytes of file data to download and install,
so be patient.

Test the ESP32 support
A while later, when the utility completes the download and
installation of the software, confirm that the ESP32 support is
there.

In the Arduino IDE menu, click on Tools, Board, and scroll down
to see the new ESP32 section. There should be numerous
boards there. The one we are interested mostly about, is the
generic ESP32 Dev Module, like in the figure below. Click on
“ESP32 Dev Module” to select it, and make it the active target
in the IDE.

Extracted from https://techexplorations.com
Page 77

The ESP32 support software provides support for numerous
ESP32 boards.

Now that you have selected the ESP32 Dev Module, confirm
the selection in the IDE window. The status line should contain
the text “EXP32 Dev Module,” as well as its various
parameters, like its frequency and flash memory size.

Yes, the ESP32 is the Arduino IDE programming target.

Let’s do one last test: Load one of the example ESP32
sketches. In the IDE menu, select File, Examples, ESP32,

Extracted from https://techexplorations.com
Page 78

AnalogOut, ledcWrite_RGB. This is actually one of the sketches
we discuss in the video lecture.

Load the ledcWrite_RGB example sketch.

This sketch demonstrates how to create PWM output, and uses
functions that come with the ESP32-Arduino Core, and are not
available to the Arduino Uno. You can learn more about these
and other hardware-specific functions in the video course.

Extracted from https://techexplorations.com
Page 79

An ESP32 example sketch.

This concludes the installation and verification of the Arduino
IDE support for the ESP32 board. If you want to learn how to
install the ESP32 support for the Mac, check out lesson 7.

If your ESP32 Dev Kit contains the CP21012 USB driver chip
(most lower-cost dev kits do), you will need to install the USB
driver on your computer before you can upload your first
sketch. You can learn how to do this in Lesson 9.

Ready for some serious learning?
Enrol to

ESP32 for Busy People

Extracted from https://techexplorations.com
Page 80

https://techexplorations.com/guides/esp32/begin/idemac/
https://techexplorations.com/guides/esp32/begin/cp21xxx/
https://techexplorations.com/so/esp32fbpev/

Install the drivers CP21012 for the USB
bridge chip
Introduction to the ESP32 guide series

Install the drivers
CP2102 for the USB
bridge chip
In this lesson, I will show you how to install the driver for the
CP210x family of USB to UART bridge chips. This chip is used
on many ESP32 development boards to support USB
communications.

In this lesson, I will show you how to install the driver for the
CP210x family of USB to UART bridge chips. This chip is used
on many ESP32 development boards to support USB

Extracted from https://techexplorations.com
Page 81

communications.

You can watch the video, or if you are the “reading” type, you
can read the text below.

What is the CP210x USB to UART bridge?
Before we start experimenting with the ESP32 dev kit, I
wanted to mention one issue that a lot of people come across,
and that has to do with the sheer number of different
development kits for the ESP32, and the small differences
between them.

One of those differences has to do with the chip that is used to
implement the USB to UART bridge which enables the USB
programmability of the board.

My dev kit contains this chip, so I have to install the driver for
the operating system, and it isn’t normally installed by default.
So this chip here on my board, which is just stock standard as
I’ve said before, requires a driver that typically is not installed
by default on Windows or Mac OS computers and therefore has
to be installed manually.

Extracted from https://techexplorations.com
Page 82

The CP2102 USB-UART bridge chip on my ESP32 dev board

Without installing this particular driver, you will not be able to
upload a sketch to the board.

How to identify your board’s bridge chip
My particular board uses the CP2102 bridge chip. There’s a
good chance that your board uses the same one or at least a
bridge from the same CP210x family as these are all popular
low-cost USB to UART bridge chips.

To identify the USB to UART bridge chip on your board, first try
to read the model number from the package of the chip itself.
If at all possible, you will need a strong magnifying glass. In
most of my boards, the UART bridge chips have no readable
text on them, so I had to investigate further.

Go to esp32.net/usb-uart/, where you will find lists of bridge
chips and the dev board on which they are used.

Extracted from https://techexplorations.com
Page 83

http://esp32.net/usb-uart/

At esp32.net/usb-uart/, you will find information that will help
you identify your board’s UART bridge chip.

How do you know if you need to install
the bridge driver?
You might be one of the lucky ones. Your ESP32 dev kit may
be using a USB bridge chip, which is already supported by your
operating system.

To determine that, connect your development kit to your
computer via USB.

Then, start up your Arduino IDE, and look under Tools, Port.

If your dev kit is connected to your computer, but its port is
not listed under “Port,” you will need to install the USB-UART
driver.

Can you see your dev kit port listed there? If not, you will need
to install the third-party driver, so continue reading.

Extracted from https://techexplorations.com
Page 84

Install the USB-UART driver
Using the information available at esp32.net, determine the
USB-UART bridge chip that is used in your ESP32 dev kit. I
discovered that mine uses CP2102.

Once you have the model number, you need to find the driver
that is appropriate for your operating system.

To do this, go to the Silicon Labs website. This link will take
you directly to the driver download page.

The source of the USB-UART bridge drivers for the CP210x
chips is Silicon Labs.

This driver is available for a variety of operating systems.
Download the one for your operating system and install it.

Most likely, you will need to restart your operating system. If

Extracted from https://techexplorations.com
Page 85

http://txplo.re/cp210x

you are not prompted to restart your operating system, be
sure to restart the Arduino IDE.

Because of how many different drivers are out there and the
differences between their operating systems and the exact
installation procedure, I have not documented the driver
installation process.

Verify the driver installation
After the driver installation is complete, you should test it.

Start, or restart, your Arduino IDE.

Connect your ESP32 development kit to your computer.

Click on the Tools menu, then click on Port.

Can you see your development kit listed?

My dev kit is listed in the Port menu; the driver installation was
successful.

Extracted from https://techexplorations.com
Page 86

Click on the dev kit port to make it the target for the Arduino
IDE.

Let’s try and upload the current sketch. It’s ok that it is empty,
we just want to verify that the Upload process works, nothing
else.

Click on the Upload button (the IDE will probably ask you to
save the sketch first; click Ok to that).

The test upload was successful.

Look at the log messages that appear in the Arduino IDE. You
will be able to see the progress of the upload process until it
reaches 100%, and the hash of the data is verified. Your board
will then reset so that the newly uploaded sketch can start its
execution.

Extracted from https://techexplorations.com
Page 87

And with this, your setup is complete, and you can start your
experimentation with your ESP32. In the next lesson, you will
learn how to make an LED blink, which is the obligatory first
sketch for virtually any electronics platform.

Ready for some serious learning?
Enrol to

ESP32 for Busy People

This is our comprehensive ESP32 course for Arduino Makers.

It’s packed with high-quality video, mini-projects, and
everything you need to learn Arduino from the ground up.

Just click on the big red button to learn more.

Learn more

Jump to another article

It feels and works like an Arduino, but… WOW

From the Arduino Uno to the ESP32: Maker transformation

My first ESP32 project experience

Lessons

1: The ESP32 module2: The ESP32 Devkit3: The ESP32 vs
Arduino4: The ESP32 GPIOs5: The ESP32 communications6:
The ESP32 devkit power supply7: Setting up ESP32 in the
Arduino IDE on Mac OS8: Setting up ESP32 in the Arduino IDE
on Windows 109: Install the drivers CP2102 for the USB bridge
chip10: Digital output LED11: Digital output PWM

Extracted from https://techexplorations.com
Page 88

https://mpl-publisher.com/so/esp32fbpev/
https://mpl-publisher.com/guides/esp32/begin/wow/
https://wp.techexplorations.com/guides/esp32/begin/transformation/
https://wp.techexplorations.com/guides/esp32/begin/experience/
https://mpl-publisher.com/guides/esp32/begin/module/
https://wp.techexplorations.com/guides/esp32/begin/devkitv4/
https://wp.techexplorations.com/guides/esp32/begin/esp32ard/
https://wp.techexplorations.com/guides/esp32/begin/esp32ard/
https://wp.techexplorations.com/guides/esp32/begin/gpio/
https://wp.techexplorations.com/guides/esp32/begin/comms/
https://wp.techexplorations.com/guides/esp32/begin/power/
https://wp.techexplorations.com/guides/esp32/begin/power/
https://wp.techexplorations.cm/guides/esp32/begin/idemac/
https://wp.techexplorations.cm/guides/esp32/begin/idemac/
https://wp.techexplorations.com/guides/esp32/begin/idewin/
https://wp.techexplorations.com/guides/esp32/begin/idewin/
https://wp.techexplorations.com/guides/esp32/begin/cp21xxx/
https://wp.techexplorations.com/guides/esp32/begin/cp21xxx/
https://wp.techexplorations.com/guides/esp32/begin/digitalout/
https://wp.techexplorations.com/guides/esp32/begin/pwm/

Digital output with an LED
Introduction to the ESP32 guide series

Digital output
experiment using an LED
In this lesson, you will start the practical exploration of the
features of the ESP32 dev kit.Observing “tradition,” the first
sketch and circuit I invite you to experiment with will make a
red LED blink. By doing so, you will learn how to control the
state of a GPIO on the ESP32.

In this lesson, you will start the practical exploration of the
features of the ESP32 dev kit. Observing “tradition,” the first
sketch and circuit I invite you to experiment with will make a
red LED blink. By doing so, you will learn how to control the
state of a GPIO on the ESP32.

Extracted from https://techexplorations.com
Page 89

You can watch the video, or if you are the “reading” type, you
can read the text below.

The wiring
This little example contains a single LED connected in series to
a 230 resistor. You can use any resistor value between 230
and 500 , and the LED will be bright.

Careful, though, don’t go lower than 230 because then the LED
will be drawing too much current from the ESP32, and this can
cause damage.

Connect the anode of the LED to one of the GPIOs on the
ESP32, and the cathode to the blue rail, which is connected to
one of the GND pins of the ESP32 dev kit.

You can see the schematic below.

Extracted from https://techexplorations.com
Page 90

An LED is controlled by GPIO32 and is protected by a 230
resistor connected to GND1.

I have connected my LED to GPIO32, though I could have used
any of the other pins (with some exceptions that I’m going to
discuss later).

Pins
Throughout this course, I’ll be using this pin map that I’ve put
together. You have seen it already in lesson 4, but here it is
again:

Peter’s ESP32 pin map makes it easy to find the right pin for
the job (click on the image for the hi-res version).

In this pin map, you can see the most frequently used
functions of each pin.

As you can see, GPIOs 34, 35, 36, 39 can only be used as
inputs. Therefore, we can’t use any of them to drive the LED.
They can be used for other things, though.

Notice the little “~” marks? A pin that is marked with a “~”
can be used for PWM (Pulse Width Modulation) output. I show

Extracted from https://techexplorations.com
Page 91

you how to generate PWM signals in the video course.

Working with the breadboard
For small circuits, you can plug your ESP32 dev kit to a mini
breadboard, as I do in the photo below:

Place the dev kit on the mini breadboard so that holes from
column 1 are exposed.

Attach the dev kit to the breadboard so that two rows of pins,

Extracted from https://techexplorations.com
Page 92

starting at column 1, are available for jumper wires. In the
majority of the experiments that I demonstrate in the course, I
use the pins on the right side of the dev kit, so this
arrangement works well.

By placing the top-left pin of the dev kit on column 1 of the
breadboard, it is easier to count pins and plug-in jumper wires
as you can look at the column numbers on the breadboard.

The sketch
Let’s have a look at the sketch now.

Instead of loading a pre-written sketch, you will load the blink
LED example and then modify it slightly to get it to work with
the ESP32.

Load the example sketch by clicking on File, Examples, Basics,
Blink.

And this is the classic Arduino blink example. It should look like
this:

// the setup function runs once when you press reset or power
the boardvoid setup() { // initialize digital pin LED_BUILTIN as
an output. pinMode(LED_BUILTIN, OUTPUT);}// the loop
function runs over and over again forevervoid loop() {
digitalWrite(LED_BUILTIN, HIGH); // turn the LED on (HIGH is
the voltage level) delay(1000); // wait for a second
digitalWrite(LED_BUILTIN, LOW); // turn the LED off by making
the voltage LOW delay(1000); // wait for a second}

This sketch will almost work out of the box.

There is a reference to the LED_BUILTIN constant, which does
not work with the ESP32, and you must address it.

Create a new single-byte constant, and name it “led_gpio.”
The LED is connected to GPIO32, so store the value “32” in

Extracted from https://techexplorations.com
Page 93

“led_gpio.”

Then, replace all occurrences of the LED_BUILTIN reference
with “led_gpio.”

The sketch should now look like this:

const byte led_gpio = 32;// the setup function runs once when
you press reset or power the boardvoid setup() { // initialize
digital pin LED_BUILTIN as an output. pinMode(led_gpio,
OUTPUT);}// the loop function runs over and over again
forevervoid loop() { digitalWrite(led_gpio, HIGH); // turn the
LED on (HIGH is the voltage level) delay(1000); // wait for a
second digitalWrite(led_gpio, LOW); // turn the LED off by
making the voltage LOW delay(1000); // wait for a second}

That’s all the modifications necessary. You can go ahead and
upload this sketch to your board to see it working.

Upload to the board
Connect your ESP32 board to your computer.

Make sure the board model is selected (look at the status line
of the Arduino IDE for the text “ESP32 Dev Module”). If the
ESP32 module is not the current target, select it from the Tools
menu, Board, “ESP32 Dev Module.”

Then, check that the USB port for the ESP32 module is
selected. Again, look at the status line for confirmation, and if
the com/serial port does not look correct, select the correct
one from the Tools menu, Port.

Extracted from https://techexplorations.com
Page 94

Check that your board is ready to receive the sketch.

When the board model and port selections checkout (i.e., they
are correct), it’s time to upload the sketch.

Click on the Upload button. If your board is like mine, and can’t
automatically go into upload mode, press and hold the “BOOT”
button immediately after you click on the Upload button. Then,
observe the Arduino IDE output pane for upload progress
information. When the upload starts, you can release the
BOOT button.

Extracted from https://techexplorations.com
Page 95

Press and hold the BOOT button until the upload begins.

The upload will complete when progress reaches 100%.

Writing progress is 100%.

When the upload is complete, the board will automatically
reset, and the newly uploaded sketch will start running. The
LED will blink at a rate of 1Hz.

Extracted from https://techexplorations.com
Page 96

The LED is blinking, so the sketch is running on the ESP32.

This wasn’t too hard, right?

Let’s take this one step further in the next lesson. You will use
the same circuit to make the LED fade on and off, using the
ESP32 PWM capability.

Ready for some serious learning?
Enrol to

ESP32 for Busy People

This is our comprehensive ESP32 course for Arduino Makers.

It’s packed with high-quality video, mini-projects, and
everything you need to learn Arduino from the ground up.

Just click on the big red button to learn more.

Extracted from https://techexplorations.com
Page 97

https://techexplorations.com/guides/esp32/begin/pwm/

Digital output PWM
Introduction to the ESP32 guide series

PWM output experiment
using an LED
In this article, I’ll show you how to make an LED fade using the
PWM capability of the ESP32.

In the previous lesson, you learned how to get the LED
connected an ESP32 to blink. In this article, I’ll show you how
to make it fade using the PWM capability of the ESP32.

If you are not familiar with PWM, please checkout Arduino Step
by Step Getting Started.

Extracted from https://techexplorations.com
Page 98

https://techexplorations.com/guides/esp32/begin/digitalout/
https://wp.techexplorations.com/courses/asbs-getting-started/
https://techexplorations.com/courses/asbs-getting-started/

The Arduino, of course, can also output PWM. But as you’ll see,
the ESP32 has got several additional capabilities in its
hardware that the Arduino Uno with the Atmega328 cannot
even imagine.

You can watch the video, or if you are the “reading” type, you
can read the text below.

The wiring
For this experiment, you can reuse the circuit from the
previous lesson.

The circuit contains a single LED connected in series to a 230
resistor. You can use any resistor value between 230 and 500 ,
and the LED will be bright.

Connect the anode of the LED to GPIO32 on the ESP32, and
the cathode to the blue rail on the breadboard, which is
connected to one of the GND pins of the ESP32 dev kit.

You can see the schematic below.

Extracted from https://techexplorations.com
Page 99

An LED is controlled by GPIO32 and is protected by a 230
resistor connected to GND1.

I have connected my LED to GPIO32, though I could have used
any of the other pins (with some exceptions that I’m going to
discuss later).

GPIO32, like most other GPIOs, are PWM-capable.

The sketch
Here, I think it is useful to compare the Arduino version of the
fading LED sketch, with the ESP version. I have them side-by-
side below:

Arduino version

int led = 9; // the PWM pin the LED is attached toint brightness

Extracted from https://techexplorations.com
Page 100

= 0; // how bright the LED isint fadeAmount = 5; // how many
points to fade the LED by// the setup routine runs once when
you press reset:void setup() { // declare pin 9 to be an output:
pinMode(led, OUTPUT);}// the loop routine runs over and over
again forever:void loop() { // set the brightness of pin 9:
analogWrite(led, brightness); // change the brightness for next
time through the loop: brightness = brightness + fadeAmount;
// reverse the direction of the fading at the ends of the fade: if
(brightness <= 0 || brightness >= 255) { fadeAmount = -
fadeAmount; } // wait for 30 milliseconds to see the dimming
effect delay(30);}

ESP32 version

const byte led_gpio = 32; // the PWM pin the LED is attached
toint brightness = 0; // how bright the LED isint fadeAmount =
5; // how many points to fade the LED by// the setup routine
runs once when you press reset:void setup() {
ledcAttachPin(led_gpio, 0); // assign a led pins to a channel //
Initialize channels // channels 0-15, resolution 1-16 bits, freq
limits depend on resolution // ledcSetup(uint8_t channel,
uint32_t freq, uint8_t resolution_bits); ledcSetup(0, 4000, 8); //
12 kHz PWM, 8-bit resolution}// the loop routine runs over and
over again forever:void loop() { ledcWrite(0, brightness); // set
the brightness of the LED // change the brightness for next
time through the loop: brightness = brightness + fadeAmount;
// reverse the direction of the fading at the ends of the fade: if
(brightness <= 0 || brightness >= 255) { fadeAmount = -
fadeAmount; } // wait for 30 milliseconds to see the dimming
effect delay(30);}

In the Arduino, we use the analogWrite() function to “write” a
value between 0 and 254 to the LED pin. Larger values will
cause the LED to stay on for longer during a cycle, and thus
the LED will be brighter.

The analogWrite() function accepts two parameters:

The number of the pin to which the LED is1.

Extracted from https://techexplorations.com
Page 101

connected
The PWM value from 0 to 2542.

Inside the loop function, each time it is called, the brightness
value is increased or decreased by 5, depending on whether
we are increasing or decreasing the LED brightness.

Simple.

The ESP32 does not support the analogWrite() function. But it
does support a much better one, the ledcWrite() function.

The ledcWrite() is very similar to analogWrite(). It also requires
two parameters:

The PWM channel that we want to “write” a1.
value to.
The PWM value we want to write to the2.
selected channel.

This simple function shows off the power of the ESP32. Both
the channel and the PWM values are configurable.

The PWM channel is not the same as a physical pin. The ESP32
contains 16 independent channels. Each of those can be
assigned to any PWM-capable pin. This means that you can
use any 16 GPIOs to generate PWM output.

The resolution of the PWM signal is also configurable. While in
the Arduino, a PWM signal is set to 8 bit, in the ESP32, it can
be whatever you choose, from 1 to 16 bits.

To assign a PWM channel to a pin, and configure the resolution
of the signal, the ESP32-Arduino Core software provides two
functions:

ledcAttachPin(gpio, channel)
ledcSetup(channel, frequency, resolution)

Extracted from https://techexplorations.com
Page 102

In ledcAttachPin(), pass the GPIO number and the channel
number that you want to bind. In the example sketch, you can
see:

ledcAttachPin(led_gpio, 0);

This binds the PWM channel “0” to GPIO32.

We use ledcSetup(channel, frequency, resolution) to configure
the PWM signal. In the example sketch, you can see:

ledcSetup(0, 4000, 8)

The first parameter is “0”. This means that we are configuring
the PWM channel “0”.

The second parameter is 4000, which means that we have
chosen the PWM frequency to be 4KHz. The frequency range
depends on the resolution you have chosen, but typical values
for an 8-bit resolution are from 4KHz to 8KHz. If you are
curious about the details, read this.

The third parameter is “8,” meaning 8 bits. You can set the
resolution to any value between 1 and 16 bits.

Use ledcAttachPin() and ledcSetup() function in setup() to…
setup the PWM channel 0, and then you are ready to start
creating PWM output.

Inside the ESP32 version of the sketch, have a look at the
loop(). Apart from the substitution of analogWrite() with
ledcWrite(), the code should look very familiar.

PWM signal visualization with the
oscilloscope
The ESP32 PWM output is very configurable, and this helps in
creating ver precise output. I used my oscilloscope to see the
PWM signal that was generated by my ESP32. It looks like this:

Extracted from https://techexplorations.com
Page 103

https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/peripherals/ledc.html#ledc-api-supported-range-frequency-duty-resolution

My oscilloscope visualizes the ESP32 8-bit, 4KHz PWM output.

Please watch the video at the top of this article for the details
of my experimentation with my ESP32 and the oscilloscope.

This concludes this introductory series on the ESP32. There’s a
lot more to learn.

If you are keen to make the most of your ESP32, consider
enrolling in my full video course, “ESP32 For Busy People.”
Unless you have time to waste

Ready for some serious learning?

Enrol to

ESP32 for Busy People

This is our comprehensive ESP32 course for Arduino Makers.

It’s packed with high-quality video, mini-projects, and
everything you need to learn Arduino from the ground up.

Extracted from https://techexplorations.com
Page 104

	0-it-feels-and-works-like-an-arduino-but-wow
	1-from-the-arduino-uno-to-the-esp32-maker-transformation
	2-my-first-esp32-project-experience
	3-the-esp32-module
	4-the-esp32-development-kit
	5-esp32-vs-arduino
	6-the-esp32-gpios
	7-the-esp32-communications
	8-the-esp32-devkit-power-options
	9-setup-esp32-in-the-arduino-ide-mac
	10-setup-esp32-in-the-arduino-ide-windows
	11-install-the-drivers-cp21012-for-the-usb-bridge-chip
	12-digital-output-with-an-led
	13-digital-output-pwm
	Blank Page

