

Peter Dalmaris, PhD

Arduino Programming
Tips and Tricks

Get the most out of your
Arduino with articles from
the Tech Explorations Blog

Extracted from https://techexplorations.com
Page 1

https://techexplorations.com

Welcome to this special collection of articles,
meticulously curated from the Tech Explorations blog
and guides. As a token of appreciation for joining our
email list, we offer these documents for you to
download at no cost. Our aim is to provide you with
valuable insights and knowledge in a convenient
format. You can read these PDFs on your device, or
print.

Please note that these PDFs are derived from our blog
posts and articles with limited editing. We prioritize
updating content and ensuring all links are functional,
striving to enhance quality continually. However, the
editing level does not match the comprehensive
standards applied to our Tech Explorations books and
courses.

We regularly update these documents to include the
latest content from our website, ensuring you have
access to fresh and relevant information.

Extracted from https://techexplorations.com
Page 2

License statement for the PDF documents on this
page

Permitted Use: This document is available for both educational
and commercial purposes, subject to the terms and conditions
outlined in this license statement.

Author and Ownership: The author of this work is Peter
Dalmaris, and the owner of the Intellectual Property is Tech
Explorations (https://techexplorations.com). All rights are
reserved.

Credit Requirement: Any use of this document, whether in part
or in full, for educational or commercial purposes, must include
clear and visible credit to Peter Dalmaris as the author and Tech
Explorations as the owner of the Intellectual Property. The credit
must be displayed in any copies, distributions, or derivative
works and must include a link to https://techexplorations.com.

Restrictions: This license does not grant permission to sell the
document or any of its parts without explicit written consent
from Peter Dalmaris and Tech Explorations. The document
must not be modified, altered, or used in a way that suggests
endorsement by the author or Tech Explorations without their
explicit written consent.

Liability: The document is provided "as is," without warranty of
any kind, express or implied. In no event shall the author or
Tech Explorations be liable for any claim, damages, or other
liability arising from the use of the document.

By using this document, you agree to abide by the terms of this
license. Failure to comply with these terms may result in legal
action and termination of the license granted herein.

Extracted from https://techexplorations.com
Page 3

1. PWM and buffer overflow

Arduino programming guide series

PWM and buffer overflow
What happens if you write a PWM value that is larger than
the maximum value that the Arduino’s analogWrite()
function can accommodate? This is an interesting case of
“buffer overflow”.

The Arduino Uno is able to produce Pulse Width Modulation
signals via pins 3, 5, 6, 9, 10, and 11. With PWM, you can
approximate analog output programmatically and do things
like fade an LED on and off or control the speed of a motor.

PWM values and register bits

In the Atmega328 (the chip that powers the Arduino Uno),
the register that is used by the PWM function has a
resolution of 8 bits. This gives you a total of 256 possible

Extracted from https://techexplorations.com
Page 4

https://en.wikipedia.org/wiki/Pulse-width_modulation
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcontrollers-ATmega328P_Datasheet.pdf
https://en.wikipedia.org/wiki/Processor_register

“analog” output levels, from 0 to 255.

If you attach an LED to a PWM-capable pin, you can drive it
to 256 different brightness levels, from totally off (PWM
value “0”) to totally on (PWM value “255”).

And if you attach a motor, you can drive it to 256 different
speed levels.

Why 256? because the register contains 8 bits, and a binary
number with 8 bits can be one of 2 ^ 8 = 256.

You can set a PWM value by using the analogWrite(pin,
value) instruction.

So, analogWrite(3, 125) would set pin 3 to value 125.

How to overflow the PWM register

Now, here is where it gets interesting.

What happens if we set analogWrite to a value bigger than
255? Say, 256?

Let’s think about this for a minute.

If the PWM value is 255, the binary version is 11111111 (total is
8 bits) is stored in the PWM register (feel free to use this
calculator for such binary to decimal conversions). A
connected LED would light up in maximum brightness.

Let’s add 1 to the register, and make the PWM value 256.

The binary version of 256 is 0000000100000000 (total is 16
bits) since now we need two bytes to represent this value.

Extracted from https://techexplorations.com
Page 5

https://en.wikipedia.org/wiki/Binary_number
https://en.wikipedia.org/wiki/Binary_number
https://www.arduino.cc/reference/en/language/functions/analog-io/analogwrite/
https://www.arduino.cc/reference/en/language/functions/analog-io/analogwrite/
https://www.binaryhexconverter.com/binary-to-decimal-converter

But, the Arduino (in reality, its Atmega328P chip) can only fit
the first byte in its PWM register, the one in green.

The effect of PWM register overflow

The second byte will overflow and “disappear” (the red
part).

So, what is actually stored in the PWM register is 00000000.
This is decimal “0”, which means that your LED is turned
off.

In other words, analogWrite(3, 0) and analogWrite(3, 256)
would have the exact same effect on an LED or a motor.

Add another “1” to the register, and the PWM value now is
257.

The binary version of 257 is 0000000100000001. The byte in
green is stored in the PWM register, and the rest (in red)
disappears. In the register now the decimal value “1” is
stored.

The lesson to take home is that although you can set the
PWM value in analogWrite to any decimal you like, only the
first byte of this number will fit in the PWM register.

The rest will overflow and disappear.

Extracted from https://techexplorations.com
Page 6

2. What is the baud rate?
Arduino programming guide series

What is the “baud” rate?
The “baud” rate is a unit used to describe the speed of serial
communications between two electronic devices. The exact
meaning of this unit is often clout in confusion. What exactly
is “baud”?

The baud rate (the symbol is “Bd”) is unit we use to describe
the “speed” of communication between the two electronic
devices. Your computer and the Arduino talk via the
USB/RS-232 or similar (serial) interface. There are a few
parameters that control this communication, but all of them
are standardized (so you don’t have to worry about them)
except for the speed.

If you don’t set the two devices to the same speed, then one
device will be sending data to the other faster or slower than
expected. When two serial devices are not set on the same
communications speed, data interchange will not be reliable.

Extracted from https://techexplorations.com
Page 7

https://en.wikipedia.org/wiki/Baud
https://en.wikipedia.org/wiki/USB
https://en.wikipedia.org/wiki/RS-232

What is a “baud”?

A speed of 9600 bauds means that data will flow between the
devices at a rate of 9600 signal changes per second.

A signal change is an event such as a change in one of the
signal’s electrical characteristics, such as the voltage, phase,
or frequency.

A common cause of confusion here is that often people
incorrectly perceive that 1 signal change is the same as 1 bit.
Therefore, people expect that 9600 bauds are the same as
9600 bits per second, which it isn’t.

At the electrical level, a computer uses voltages to transmit
data (a computer can also use multiple voltage levels plus
the signal phase to encode multiple bits in a single signal
change, but let’s keep things simple here).

B y E l p a k a t E n g l i s h W i k i p e d i a , C C B Y - S A 3 . 0 ,
https://commons.wikimedia.org/w/index.php?curid=206670
98

Data is transmitted by changing the signal parameters
rapidly. For example, you can create a protocol where binary
“1” is transmitted by changing the voltage from HIGH to
LOW, and a “0” by changing the voltage from a LOW to
HIGH.

When you have a protocol where 1 signal change encodes 1
bit, then 1 baud = 1 bit per second.

Extracted from https://techexplorations.com
Page 8

It is possible to have multiple bits encoded in a single signal
change, as in Phase-shift keying (PSK). In PSK, each signal
change encodes 2 bits. So, 1 baud = 2 bit per second.

In quadrature amplitude modulation (QAM), we have 4 bits
for every signal change, so 1 baud = 4 bit per second.

And the list goes on.

COM speed in the Arduino

In practical terms, you must ensure that your devices are
communicating at the same baud rate.

For the Arduino, do this:

Look in your Arduino sketch for a line that looks like1.
this (in the setup function): Serial.begin(9600) —
The number may vary.2. Set the speed of your serial
terminal on the computer to the same number.

This should do it!

Extracted from https://techexplorations.com
Page 9

https://en.wikipedia.org/wiki/Phase-shift_keying
https://en.wikipedia.org/wiki/Quadrature_amplitude_modulation
https://en.wikipedia.org/wiki/Modulation#Digital_modulation_methods

3. Focus on the type parameter in
println()

Arduino programming guide series

Focus on the type parameter in
“println()”
We use the println() function to print a string to the serial
monitor. The same function is overloaded with a second
parameter that allows us to designate the type of data we
want to display.

“Serial.println()” is one of the most useful functions in the
Arduino language. It will print a string or a number to the
serial monitor. It is an easy way to get data out of a sketch.

The most common way to use “println()” is like this:

Extracted from https://techexplorations.com
Page 10

https://www.arduino.cc/reference/en/language/functions/communication/serial/println/

Serial.println(“This will print this message to the Serial
monitor”);

In this example, the single parameter of the function
contains a String.

But, did you know that this function is overloaded, and can
accept a second parameter?

The second parameter gives you the opportunity to specify
the type of the data you specify in the first parameter.

Here’s two examples:

Serial.println(21, DEC) will print “21” in the serial
monitor.

Serial.println(21, BIN) will print “00010101 ” in the
serial monitor.

The “println()” function accepts the following types:

DEC for decimals

HEX for hexadecimals

OCT for octals

BIN for binary numbers

The type parameter is optional, so you can choose to not
include one in your println instruction. In that case the
output will default to decimal (DEC).

More details about this parameter are available in the

Extracted from https://techexplorations.com
Page 11

https://en.wikipedia.org/wiki/Function_overloading

4. ”0″ or
“A0” when used

with analogRead()?

Arduino programming guide series

“0” or “A0” when used with
analogRead()?
The short answer is, it does not matter. But there’s a catch.

When you use the analogRead() function, “0” and “A0” refer
to the same pin, the analog pin 0.

These two invocations of analogRead() are equivalent:

analogRead(0);

Extracted from https://techexplorations.com
Page 12

https://www.arduino.cc/reference/en/language/functions/analog-io/analogread/

analogRead(A0);

Therefore, when you use analogRead() or analogWrite(), it
doesn’t matter which pin name or number you use.

However, there’s a “catch”.

It is possible to use an Arduino analog pin as if it was a digital
pin.

For example, you can write:

digitalRead(A0);

This will return either HIGH or LOW, instead of a number
from 0 to 1023 (assuming you are using an Arduino Uno).

Points to remember:

If you use an analog pin 0 with digitalWrite() or
digitalRead(), then you must use the full analog pin
designator (“A0”, “A1”, etc).

If you use an analog pin with analogRead() or
analogWrite(), you can simply use the number of the
analog pin (“0”, “1”, etc.) or the full analog pin name
(“A0”, “A1”, etc.).

Extracted from https://techexplorations.com
Page 13

https://www.arduino.cc/reference/en/language/functions/analog-io/analogwrite/
https://www.arduino.cc/reference/en/language/functions/digital-io/digitalwrite/
https://www.arduino.cc/reference/en/language/functions/digital-io/digitalread/

5. What is the _t in uint8_t ?
Arduino programming guide series

What is the “_t” in “uint8_t”
The Arduino language contains several easily recognizable
variables, like “bool”, “byte”, “int” and “char”. But, below
the surface, the Arduino language is really a subset of the C
language that works on microcontrollers. With it, you will
find many specialized data types designed to ensure
compatibility across devices that don’t always treat a byte
the same way.

If you have looked at more advanced Arduino code, perhaps
looking at Arduino sources on Github, you may have noticed
that a lot of variable types end with “_t”.

Extracted from https://techexplorations.com
Page 14

https://github.com/arduino-libraries/WiFi101/blob/master/src/WiFi101.h#L84

You probably already know that the Arduino “language” is
based on the C language. I am not exaggerating when I say
that our modern civilization depends on C and its object-
oriented cousin, C++. No matter what gadget (computer,
tablet, phone) you are reading this on, your electronic device
functionality infrastructure is written in C and C++.

Because C and C++ is used on so many different platforms,
from microcontrollers to supercomputers, there was a need
for types (like integers, floats, etc.) that are compatible
across all these platforms.

So, in the C99 standard (the ISO standard for the C
language), types that are designed to be cross-platform
compatible are marked with a “_t”. “t” stands for “type.”

This way, the programmers know that the uint8_t is a byte
with 8 bits no matter which platform the program runs on.

If you strive to write code that can be executed on different
computer or microcontroller systems, then it is good
practice to use data types with the “_t” extension for this
reason.

For the Arduino, we tend not to use C99 cross-platform
compatible types because most often our code is not meant
to run on other systems.

Extracted from https://techexplorations.com
Page 15

https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/C99

6. How can you use the F()
function to save on RAM?

Arduino programming guide series

Save SRAM with the F() macro
In embedded devices, like the Arduino, RAM is limited.
However, there are a few simple methods you can use to
reduce the memory footprint of your sketches so that they
will fit in the available memory space. The F() macro is one
such method.

The image above is a photo of static RAM (SRAM) cells of a
STM32F103VGT6 microcontroller, taken by a scanning
e l e c t r o n m i c r o s c o p e . B y Z e p t o B a r s –
http://zeptobars.ru/en/read/open-microchip-asic-what-insi
d e - I I - m s p 4 3 0 - p i c - z 8 0 , C C B Y 3 . 0 ,

Extracted from https://techexplorations.com
Page 16

https://commons.wikimedia.org/w/index.php?curid=250442
06

The Arduino Uno’s ATmega328P only has 2048 bytes of
SRAM (static RAM). It also has 32 KBytes of flash memory.

The flash memory is where your sketch is stored when you
upload it. Flash memory persists when you turn the Arduino
off.

The SRAM is where the various variables in your sketch are
stored during execution. Unlike flash memory, the contents
of the SRAM do not persist when you turn the Arduino off.

In the Arduino Uno, there is a lot more flash than SRAM
space.

Let’s look at an example of how SRAM space is used, and how
easy it is to misuse it.

Take this simple instruction:

Serial.println(“Hello world!”);

It doesn’t do anything fancy. It will simply print a short
string of text to the serial monitor.

The string of text in the double quotes will occupy 12 bytes in
the SRAM. If you have a few additional println() statements
like that, your sketch will easily fill the SRAM with static
strings of text.

If your program is large with a lot of variables like this, there
is a good chance you will run out of RAM, and your program
will crash.

Extracted from https://techexplorations.com
Page 17

https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcontrollers-ATmega328P_Datasheet.pdf
https://en.wikipedia.org/wiki/Static_random-access_memory
https://en.wikipedia.org/wiki/Flash_memory

Because the string in this example is static, i.e. it does not
change, you can easily optimize your sketch by storing the
string in the plentiful flash memory instead of the SRAM.

Serial.println(F(“Hello world!”));

I have marked the F() macro used in the println() instruction
in bold.

The F() macro tells the compiler that the contents of the
parameter should be stored in the flash memory (program
memory or PROGMEM), instead of the SRAM, hence saving
you this valuable resource for better use.

The F() macro provides us an easier syntax for marking
compatible data type values to be stored in program
memory, in place of the PROGMEM keyword modifier. If you
wanted to use the raw PROGMEM modifier instead of the F()
macro, you would do it like this:

const char a_string[] PROGMEM = “Hello world!”;

void setup(){ Serial.begin(9600); for (byte k = 0; k <
s t r l e n _ P (a _ s t r i n g) ; k + +) { m y C h a r =
pgm_read_byte_near(a_string + k); Serial.print(myChar); }}

I find the F() macro much easier compared to manually
marking a constant string for storage in program memory
and then reading it back one byte at a time.

Extracted from https://techexplorations.com
Page 18

https://www.arduino.cc/reference/en/language/variables/utilities/progmem/
https://en.wikipedia.org/wiki/Read-only_memory
https://en.wikipedia.org/wiki/Read-only_memory
https://www.arduino.cc/reference/en/language/variables/utilities/progmem/

7. What is the gibberish in your
Telnet output?

Arduino programming guide series

What is the gibberish in your
Telnet output?
When the Serial object in your sketch and the Arduino IDE
serial monitor are set to the same speed, you would expect
that clear, readable text would appear on your screen.
Sometimes it doesn’t. What’s going on? is it a glitch? what
can explain the gibberish that appears?

Extracted from https://techexplorations.com
Page 19

If you an eye for details, you may have noticed that when you
start a Telnet connection between your computer and an
Arduino equipped with an Ethernet shield, some “gibberish”
text appears as soon as the connection is established and
before you can start sending text messages back and forth.

It looks like this:

Extracted from https://techexplorations.com
Page 20

https://amzn.to/3lRsMRn

What is the origin of this “gibberish“?

Even though Telnet is a simple protocol that runs over TCP
(the Internet’s Transmission Control Protocol), it still
requires that a handshake process takes place before a
connection between a client and a server is established.

The handshake process is a quick “conversation” between
the client and the server. The two terminals are negotiating
the minimum set of parameters that are acceptable by both.
Once they agree on this, the communication can start.

These parameters are formally called “Telnet options.”

Although these options can be negotiated at any time, they
typically are when a session is first established.

Extracted from https://techexplorations.com
Page 21

https://en.wikipedia.org/wiki/Gibberish
https://en.wikipedia.org/wiki/Telnet
https://en.wikipedia.org/wiki/Internet_protocol_suite
https://en.wikipedia.org/wiki/Handshaking
http://www.tcpipguide.com/free/t_TelnetOptionsandOptionNegotiation.htm

The Arduino with it’s Ethernet shield, and a basic Telnet
server sketch wi l l ignore a l l of the handshake
communication since it is not equipped to deal with them.
The client will then drop down to the most basic level of
Telnet communication.

If you are curious, here’s some more information about
Telnet connections.

Extracted from https://techexplorations.com
Page 22

http://www.tcpipguide.com/free/t_TelnetConnectionsandClientServerOperation.htm
https://wp.techexplorations.com/wp-content/uploads/2020/01/DSC_0114-1000h-square.jpg

8. The Arduino map function
Arduino programming guide series

The Arduino map() function
The map() function makes it easy to convert numbers from
one range to another. Here’s a simple example of its usage.

The map() function makes it easy to convert a value from one
range into a proportional value of another range.

Let’s use an example that involves a potentiometer and an
electrical motor.

We can sample the potentiometer with one of Arduino’s
analog inputs, which have a resolution of 1024 values (10
bits). For this purpose, we use the analogRead() function.

To control the motor, we use Pulse Width Modulation which
has a resolution of 256 values (8 bits). For this purpose, we

Extracted from https://techexplorations.com
Page 23

https://www.arduino.cc/reference/en/language/functions/math/map/
https://en.wikipedia.org/wiki/Potentiometer
https://en.wikipedia.org/wiki/Electric_motor
https://www.arduino.cc/reference/en/language/functions/analog-io/analogread/

use the analogWrite() function.

Therefore, whichever value we measure in the analog inputs,
we have to convert it to a proportional value inside the PWM
range of values.

Using the map function, this is as simple as this:

int mappedVal = map(analogRead(0),0,1023,0,254);

Say that the analogRead() function read the value “328”
from the potentiometer. The call to the map() function will
look like this (I have replaced the call to analogRead() with
the explicit value “328”):

int mappedVal = map(328,0,1023,0,253);

The result of the mapping will be 81, which will be stored in
the mappedVal variable.

Would you like to try this yourself? Here’s my Tinkercad
project. It contains a virtual Arduino Uno with a simple
sketch that contains the map() function example.

Extracted from https://techexplorations.com
Page 24

https://www.arduino.cc/reference/en/language/functions/analog-io/analogwrite/
https://www.tinkercad.com/things/fn3P0Fio7o8-brilliant-migelo-esboo/editel?sharecode=3_2XpTK733S8jIeGIMwL770y5FdImmcdNmtUt9wOWPY
https://www.tinkercad.com/things/fn3P0Fio7o8-brilliant-migelo-esboo/editel?sharecode=3_2XpTK733S8jIeGIMwL770y5FdImmcdNmtUt9wOWPY

9. Confusing keywords? follow the
source code trail

Arduino programming guide series

Confusing keywords? follow the
source code trail
A student asked me: What is the meaning of a “weird”
keyword used in a constructor? It was the keyword
“POSITIVE” in one of the constructors from the
LiquidCrystal_I2C class.

This keyword indeed is not part of the C or C++ language.

So what could it be?

Extracted from https://techexplorations.com
Page 25

It is a keyword that has been defined in an included class or
the current sketch.

To find out exactly where it is defined, you must follow the
trail of added classes, load the open-source code in your text
editor, and find out where the mysterious keyword is
defined.

I have converted this student question into an example so I
can show you how you can go about finding the origin of a
keyword that you can readily recognize.

Here is the exchange between the student an myself:

Student question (verbatim):

My IDE is not accepting the keyword POSITIVE in the lcdi2c
declaration line of code.

W h y d o w e i n s e r t t h e l i b r a r y i n t h i s
foramt(“RTClib.h”)rather than this format(<RTClib.h>)?

Student in Arduino Step by Step

Here’s my response:

You probably have the wrong library installed. There are a
few around with the same name.

The constructor that you refer to accepts keywords for
controlling the backlit. In line 197 of the LCD.h file, these
keywords are defined using a typedef construct (more about
this here). The name of this typedef is t_backlightPol.

Extracted from https://techexplorations.com
Page 26

https://techexplorations.com/so/asbsgs2/
https://github.com/fmalpartida/New-LiquidCrystal/blob/6375c81149119302de378cccc3e9b9b8d30750ed/LCD.h#L197
https://en.wikipedia.org/wiki/Typedef

In line 61 of the LiquidCrystal_I2C.h, which is the
constructor we use in the sketch, this keyword (POSITIVE) is
used via the t_backlightPol typedef. It’s just easier to
remember and understand what the purpose of the
parameter is when we use simple words instead of things
like 1, 0, HIGH, LOW.

The pre-processor of the compiler (the program that works
out where the different parts that make up your program are,
as well as a few other things) will decide how to insert the
file that you want to include into your program based on
whether the name is within brackets or double-quotes.

If you use brackets, then the pre-processor will look for a
header file and insert it into your program at the location of
the include statement.

If you use a double-quote, then the pre-processor will look
for the file (header or not, it doesn’t matter), and also insert
it into your program at the location of the include statement.

In the case of #include “RTClib.h”, we include a header file so I
guess we could have used #include <RTClib.h> instead (you
may want to try and see if that works).

The details are available in the C standard document (PDF –
N1570 Committee Draft, April 12, 2011). See section 6.10.2,
“Source file inclusion.” The difference between the two
methods is very subtle, and my self-don’t fully understand it
(nor I am curious to do). The preprocessor is responsible for
the implementation of this standard, and I know that
different preprocessors follow slightly different approaches.

Extracted from https://techexplorations.com
Page 27

https://github.com/fmalpartida/New-LiquidCrystal/blob/6375c81149119302de378cccc3e9b9b8d30750ed/LiquidCrystal_I2C.h#L65
https://en.wikipedia.org/wiki/Preprocessor
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf

10. The interrupt service routine
and volatile variables

Arduino programming guide series

The interrupt service routine and
volatile variables
Interrupt service routines (ISR) must be as small as possible.
If your sketch has to do time-consuming work after an
interrupt event, you can use volatile variables to capture data
and process it outside of the ISR.

If your sketch is trying to do too many things inside an
interrupt service routine, it may will run into problems that
will be very difficult to troubleshoot.

For example, trying to update a port expander (such as the
MCP23017 from Microchip) from an ISR will fail.

Why?

The problem with doing a write operation to the expander is
that the operation may be take too much time to complete
through the SPI interface.

Extracted from https://techexplorations.com
Page 28

https://en.wikipedia.org/wiki/Interrupt_handler
https://www.microchip.com/wwwproducts/en/MCP23017
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface

In general, the workload inside an interrupt service routine
should be very small. How much is “very small”? Think of
operations as simple as updating an microcontroller register
or memory location.

That’s it.

Operations like writing to the serial monitor that take more
than a few processing cycles should be avoided.

In place of longer-running operations inside the ISR, you
should write code that simply updates a volatile variable.
When your sketch returns to the loop() function, it can read
the data from the same volatile variable and process it as
needed.

In other words, a volatile variable allows you to get data out
of an ISR, to the rest of your sketch. This way, you can do the
longer processing you need, without increasing the footprint
of the ISR.

To declare a volatile variable, use the “volatile” keyword,
like this:

volatile int temp = 0;

Then, you can use it like any other variable. Inside the ISR:

void isr() { temp = analogRead(0); //Keep this block very
short! }

Finally inside the loop():

loop() { Serial.println(temp); // plus lots more code}

Extracted from https://techexplorations.com
Page 29

https://www.arduino.cc/en/pmwiki.php?n=Reference/Volatile

The volatile keyword informs the compiler that the flagged
variable can change at any time, from any part of the sketch
or program. In the Arduino that only has one processing unit
and no true parallel programming is possible, this happens
in the interrupt service routine only.

If you want to learn more about port expanders, interrupts
and the volatile keyword, consider our comprehensive course
Arduino Step by Step Getting Serious.

Extracted from https://techexplorations.com
Page 30

https://techexplorations.com/so/asbsgsr1/

11. The problem with delay()

Arduino programming guide series

The problem with delay() and how
to fix it
Microcontrollers have scarce resources. Perhaps their most
important resource is compute time, followed by RAM and
Flash memories. Therefore, we should not waste our MCU’s
time. But when you use delay(), you actually waste time.

Extracted from https://techexplorations.com
Page 31

The Arduino delay() function is a convenient way to delay the
execution of a sketch. It is an intuitive instruction that most
learners seem to be able to grasp and use without difficulty.

It something drilled to new Arduino makers early on, when
they get their first LED to blink:

Extracted from https://techexplorations.com
Page 32

https://www.arduino.cc/reference/en/language/functions/time/delay/

void loop() { digitalWrite(13, HIGH); delay(1000); // <– here
it is, delay for a second digitalWrite(13, LOW); delay(1000); }

The delay() function makes programming easy. In the
example above, we are simply making an LED blink.

No big deal.

You Arduino doesn’t have anything else to do, anyway.

But, what if your Arduino had more work to do?

It might need to check a sensor and communicatee with
another Arduino.

It might also need to record sensor data to an Internet of
Things service and turn on a relay.

With the 1000ms delay that we have imposed with the
delay() function, the Arduino is actually forced to do nothing
(other than counting milliseconds) twice, in a single loop.

That is a waste of computing cycles!

The problem with the delay() function is that it is
“blocking.” The functions blocks the execution of any other
code, except for interrupt service routines.

Obviously, this is not an efficient way to do programming.

We can improve the situation by exchanging simplicity with
somewhat more complicated code. In the example below, I
use a construct that checks periodically to determine if a
given amount of time has elapsed. If it has, then it toggles
the LED. If not, the execution continues.

Extracted from https://techexplorations.com
Page 33

https://en.wikipedia.org/wiki/Internet_of_things
https://en.wikipedia.org/wiki/Internet_of_things
https://en.wikipedia.org/wiki/Blocking_(computing)

1. const int ledPin = 13; // the number of the LED pin2. int
ledState = LOW; // ledState used to set the LED3. unsigned
long previousMillis = 0; // will store last time LED was
updated4. const long interval = 1000; // interval at which to
blink (milliseconds)5. void setup() {6. pinMode(ledPin,
OUTPUT);7. }8. void loop() {9. unsigned long currentMillis =
millis();10. if (currentMillis – previousMillis >= interval) {11.
previousMillis = currentMillis;12. if (ledState == LOW) {13.
ledState = HIGH;14. } else {15. ledState = LOW;16. }17.
digitalWrite(ledPin, ledState);18. }19. }

When this code runs on the Arduino, it will make the LED
blink on and off once every second. It is the exact outcome of
the version of the code that uses the delay() function, except
that it works without blocking other code.

Let’s drill into the code.

Line 10: check if the time interval has elapsed.

Line 11: if the set time interval has elapsed, record the
current millis reading (this will be used in the next
interval check in line 10).

Line 3: We use a variable of type long for this since we
use the function millis() to get a current time reading.

Lines 12 to 16: toggle the LED on/off depending on the
value of the ledState variable.

The millis() function returns a value that represents the
number of milliseconds since the Arduino was powered up.
In other words, millis() gives us a way to track the passage of
time; it is not able to tell us what time it is. Since we are
interested only in elapsed time, not a time and date, this
reading is good enough.

Extracted from https://techexplorations.com
Page 34

https://www.arduino.cc/reference/en/language/functions/time/millis/
https://www.arduino.cc/reference/en/language/functions/time/millis/

In line 10 the sketch subtracts the previousMillis(the time we
last checked the elapsed time) from the currentMillis to work
out whether the required interval has elapsed, and if it has,
the sketch will toggle the LED.

If the interval has not elapsed, then the sketch will continue
with other instructions, so the cost of this operation is only a
couple of compute cycles; this is a massive gain in efficiency.
When you work on busy sketches that flash LEDs or check
sensors at regular intervals, this approach is worth
considering.

Extracted from https://techexplorations.com
Page 35

https://wp.techexplorations.com/wp-content/uploads/2020/01/DSC_0114-1000h-square.jpg

12. How to deal with the millis
rollover

Arduino programming guide series

How to deal with the millis
rollover
The Arduino contains a 32-bit register that is actually a
counter. It counts the number of milliseconds elapsed since
the time you powered-up the Arduino. We use this counter
to count time. But, what happens when the counter reaches
its maximum value? Let’s figure it out with the help of an
example.

Extracted from https://techexplorations.com
Page 36

The image above is borrowed from the Atmega328P
datasheet, page 24. It depicts the clock distribution block
diagram.

In a separate article in this series, I explained that the
problem with the delay() function is that it blocks execution.
As a result, your Arduino is stuck at counting milliseconds
instead of doing useful work.

A solution to the delay() blocking problem looks like this:

if (currentMillis – previousMillis >== interval) {
previousMillis = currentMillis; //… work to be done
periodically goes here }

… where previousMillis is an unsigned int that stores reading
from the last call to millis(), and currentMillis contains the
millis() reading for this check.

Apart from the additional code that you need to support this
option, one significant problem you have to deal with is that
the millis register will roll-over after around 50 days. That
means that its register (that holds an unsigned long has a
width of 4 bytes) will return to zero, and then start counting
again towards its maximum value, 4,294,967,295 (= 2^32)

So how can we deal with this problem?

It turns out that this is not a problem at all. This code can
deal with the millis register rollover without any
modification.

Let’s have a quick look at why it works, by considering a
rollover situation.

Extracted from https://techexplorations.com
Page 37

https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcontrollers-ATmega328P_Datasheet.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcontrollers-ATmega328P_Datasheet.pdf
https://techexplorations.com/guides/arduino/programming/delay/
https://www.arduino.cc/reference/en/language/functions/time/delay/
https://www.arduino.cc/reference/en/language/variables/data-types/unsignedint/

The millis register is 4 bytes in width, so the largest
unsigned number it can hold is:

11111111 11111111 11111111 11111111.

Let’s say that we are interested in tracking a duration of 10
seconds.

That’s 10,000 millis.

This duration, in binary, is (I keep the duration value also as
a long int):

00000000 00000000 00100111 00010000

In the next couple of steps, I will calculate the difference
between the current millis and the last millis at two times:

before the rollover,

after the rollover.

Before the rollover, the previousMillis variable will contain a
number smaller than the millis max, and smaller than the
current max.

Let’s make:

previousMillis = 11111111 11111111 10110001 11011111

In the decimal system, previousMillis contains 4,294,947,295.

If we test the elapsed time at 5,000 millis after previous
Millis was taken, we will have this subtraction:

Extracted from https://techexplorations.com
Page 38

111111111 11111111 10001010 1100111 – 11111111 11111111 10110001
11011111 = 1001110001000

In decimal notation, this is:

3,000 – 4,294,947,295 = 23,001 > 10,000

So, the duration of 10 seconds has elapsed and despite the
rollover, we were able to detect it.

Remember that these values are unsigned, so the subtraction
does not yield a negative number, but a positive that is the
result of the difference between 4,294,947,295 and
4,294,967,295 (the max value for a 4-byte unsigned number)
plus 3,000.

If all this looks complicated and you are not convinced that
the rollover can be dealt with without any special provisions,
use your Arduino and run this sketch on it:

00000000 00000000 00001011 10111000 – 11111111 11111111
10110001 11011111 = 00000000 00000000 01011001 11011001

In decimal, this is:

3,000 – 4,294,947,295 = 23,001 > 10,000

So, the duration of 10 seconds has elapsed. Despite the
rollover, we were able to detect this. Remember that these
values are unsigned, so the subtraction does not yield a
negative number, but a positive that is the result of the
difference between 4,294,947,295 and 4,294,967,295 (the
max value for a 4-byte unsigned number) PLUS 3,000.

If all this looks too complicated and you are not convinced

Extracted from https://techexplorations.com
Page 39

that the rollover can be dealt with without any special
provisions, use your Arduino and run this sketch on it:

void setup() { Serial.begin(9600); // Prior to rolling over
unsigned long currentMillisA = 4294952295; // An earlier
time than currentMillis unsigned long lastMillisA =
4294947295; Serial.print(“1. Difference: “); // Find out the
d i f f e r e n c e / / b e t w e e n t h e t w o t i m e s
Serial.println(currentMillisA-lastMillisA); Serial.println(); //
Rolled over unsigned long currentMillisB = 3000; // Prior to
rolling over unsigned long lastMillisB = 4294947295;
Serial.print(“2. Difference: “); // Find out the difference //
between the two times Serial.println(currentMillisB-
lastMillisB); }void loop() { }

This sketch does the same calculation I described earlier.

In the first subtraction, both current millis and last millis are
before the rollover.

In the second subtraction, the millis register has rolled over,
and the current millis is 3000.

Feel free to try out different value to see how they are
handled.

Extracted from https://techexplorations.com
Page 40

13. Can you use delay() inside
Interrupt Service Routine?

Arduino programming guide series

Can you use delay() inside
Interrupt Service Routine?
An interrupt service routine (ISR) looks like a regular
function. It can hold any code you want, and it will work as it
would in any other function. But, the ISR is not a regular
function, and you should treat it as special.

The ISR is a function that is registered to be called when an
interrupt event occurs. For example, this interrupt can be a
change in the state of an interrupt-capable pin, or the
expiration of a timer (here’s an example sketch of a timer
interrupt).

A question I often receive is about the contents of the ISR:

Extracted from https://techexplorations.com
Page 41

https://en.wikipedia.org/wiki/Interrupt_handler
https://www.arduino.cc/reference/en/language/functions/external-interrupts/attachinterrupt/
https://playground.arduino.cc/Code/Timer1/
https://github.com/futureshocked/TE-Arduino-SbS-Getting-Serious/blob/master/_2100b_-interrupts_Demo_3_timer/_2100b_-interrupts_Demo_3_timer.ino

“Can I include arbitrary code?”

“Can I include slow functions like delay() or even
Serial.print()?”

Although this is possible, you should not.

Both delay() and Serial.print() functions are “blocking“. This
means that they stop anything else from happening in the
Arduino.

The delay() function will make the Arduino stop until your
specified interval has expired. The Serial.print() function will
also make the Arduino stop until the entire message has
b e e n p r i n t e d t o t h e s e r i a l m o n i t o r a t t h e s l o w
communication speeds of the serial interface.

An interrupt service routine should be as light as possible so
that it can service an interrupt quickly. The objective is to
allow the Arduino to continue doing what it was doing before
the interrupt.

If you use a delay(5) inside the ISR, you will be blocking the
processor for at least 5ms, which for a computer is a lot of
time.

If you need to check the passage of time inside the ISR, it is
much better to use an “if” statement, like I discussed in a
separate article.

The Arduino will be able to process the “if” statement within
a few nanoseconds, and quickly return control of the
program to the code outside of the ISR.

Here is an example sketch showing how to write an ISR that

Extracted from https://techexplorations.com
Page 42

https://www.arduino.cc/reference/en/language/functions/time/delay/
https://www.arduino.cc/reference/en/language/functions/communication/serial/print/
https://en.wikipedia.org/wiki/Blocking_(computing)
https://www.arduino.cc/reference/en/language/structure/control-structure/if/
https://mpl-publisher.com/guides/arduino/programming/delay/

uses the “if” statement to assess the passage of time. This
example is from Arduino Step by Step Getting Serious, where
I show how to use a rotary encoder.

I have highlighted the relevant block in bold.

You can see this code on Github.

/ / O r i g i n a l s k e t c h :
https://bigdanzblog.wordpress.com/2014/08/16/using-a-ky0
40-rotary-encoder-with-arduino///Modified by Peter
Dalmaris, July 2015const int PinCLK=2; // Used for generating
interrupts using CLK signalconst int PinDT=3; // Used for
reading DT signalconst int PinSW=8; // Used for the push
button switchvolatile long virtualPosition =0; // must be
volatile to work with the isrvoid isr0 () { detachInterrupt(0);
static unsigned long lastInterruptTime = 0; unsigned long
interruptTime = millis(); // If interrupts come faster than
5ms, assume it’s a bounce and ignore if (interruptTime –
lastInterruptTime > 5) { if (!digitalRead(PinDT))
v i r t u a l P o s i t i o n + + ; e l s e v i r t u a l P o s i t i o n – ; }
lastInterruptTime = interruptTime; attachInterrupt
(0 , i s r 0 , R I S I N G) ; } / / I S R 0 v o i d s e t u p () {
pinMode(PinCLK,INPUT); pinMode(PinDT,INPUT);
pinMode(PinSW,INPUT); attachInterrupt (0,isr0,RISING); //
interrupt 0 is always connected to pin 2 on Arduino UNO
Serial.begin (9600); Serial.println(“Start”);}void loop () { int
lastCount = 0; while (true) { if (!(digitalRead(PinSW))) { //
check if pushbutton is pressed virtualPosition = 0; // if YES,
then reset counter to ZERO while (!digitalRead(PinSW)) {} //
wait til switch is released delay(10); // debounce
Serial.println(“Reset”); // Using the word RESET instead of
COUNT here to find out a buggy encoder } if (virtualPosition
! = l a s t C o u n t) { l a s t C o u n t = v i r t u a l P o s i t i o n ;
Serial.print(“Count:”); Serial.println(virtualPosition); } } //
while}

Extracted from https://techexplorations.com
Page 43

https://github.com/futureshocked/TE-Arduino-SbS-Getting-Serious/blob/master/_0640b_-_Rotary_encoder_with_interrupts/_0640b_-_Rotary_encoder_with_interrupts.ino
https://techexplorations.com/so/asbsgsr1/

14. The ternary operator

Arduino programming guide series

The ternary operator
As you become more skilled in programming, you will begin
to notice that style matters almost as much as functionality.
An element of style in programming is the ability to shrink
code without altering its functionality. This results in
smaller, more concise programs.

I’ll explain with the help of an example.

We often find ourselves writing code like this:

if (digitalRead(9) == HIGH) digitalWrite(13, HIGH); else
digitalWrite(13,LOW);

An alternative way of writing the same functionality is this:

digitalWrite(13, digitalRead(9) ? HIGH : LOW);

It is shorter, with all functionality included in a single line.
Some, might say, it is beautiful.

Extracted from https://techexplorations.com
Page 44

https://en.wikipedia.org/wiki/Beauty

The short version of the code contains a ternary operator,
marked in italics and underlined.

A ternary operator looks like this:

OPERATOR ? TRUE EXPRESSION : FALSE EXPRESSION ;

The OPERATOR contains a regular boolean expression, like
“analogRead(0) < 500”.

If this expression returns TRUE, then the TRUE EXPRESSION
after the “?” delimiter will be executed.

If the OPERATOR returns FALSE, then the FALSE
EXPRESSION after the “:” delimiter will be executed.

Ternary operators can make your code shorter, and often
reduce the chance of error because they allow for the
complete expression to be written in a small amount of
space, making it easier to inspect.

Of course, the expression for this particular example can be
shortened even further.

Because the digitalRead() function returns a boolean, you can
write this:

digitalWrite(13, digitalRead(9));

The example I show here is trivial, and the use of a tertiary
operator is not truly necessary.

But, what if you had a more complicated case?

Let’s say that you needed to call an appropriate function

Extracted from https://techexplorations.com
Page 45

https://en.wikipedia.org/wiki/%3F:
https://en.wikipedia.org/wiki/%3F:
https://www.arduino.cc/reference/en/language/functions/digital-io/digitalread/

depending on the state of digital pin 9. In that case, the
ternary operator would be useful and your code would look
like this:

digitalRead(9) ? functionA() : functionB();

As you can see, the C language offers quite a few options to
help you produce concise (and beautiful) code.

Extracted from https://techexplorations.com
Page 46

https://wp.techexplorations.com/wp-content/uploads/2020/01/DSC_0114-1000h-square.jpg

15. A closer look at line feeds and
carriage returns

Arduino programming guide series

A closer look at line feeds and
carriage returns
If you have an Arduino application that must parse an HTTP
response, it helps to understand the difference between the
two most common special characters: line feed and carriage
return. Once you understand this, you will be able to reduce
the complexity of your parser by half.

When writing Arduino sketches that parse HTTP requests,
you come across code like this:

if (c == ‘n’ && currentLineIsBlank) { client.println(“HTTP/1.1

Extracted from https://techexplorations.com
Page 47

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_message
https://github.com/futureshocked/TE-Arduino-SbS-Getting-Serious/blob/master/_1110_-_Ethernet_reporting_web_server/_1110_-_Ethernet_reporting_web_server.ino#L117

200 OK”); client.println(“Content-Type: text/html”);
client.println(“Connection: close”);

In this code, there’s a special character: “n”.

This special character is a line feed.

In some cases, you may also see the Carriage Return (“r”)
special character.

In this article, I will discuss Line Feed and Carriage Return
because they seem to be causing a lot of confusion to
learners.

In a nutshell:

“n” is the newline character, or “line feed (LF).” It is
the character that marks the end of a line and the
beginning of a new line. In ASCII code, the new line
character is encoded as decimal 10.

“r” is the carriage return (CR) character. This character
returns the cursor to the beginning of the line, as
opposed to creating a new line (this is what line feed
does). In ASCII code, the carriage return character is
encoded as decimal 13.

In modern computers (as opposed to mechanical typewriters
where these operators find their roots), how exactly LF and
CR work depend on the operating system.

In Unix and Unix like systems, like Mac OS X and Linux, an
LF creates a new line and returns the cursor to the start of
the line.

Extracted from https://techexplorations.com
Page 48

https://en.wikipedia.org/wiki/Newline
http://www.asciitable.com/
http://www.asciitable.com/?__s=xxxxxxx&utm_source=drip&utm_medium=email&utm_campaign=RF+-+Tech+Explorations+Tips&utm_content=Tech+Explorations+Tip+%2335%3A+A+closer+look+to+line+feeds+and+carriage+returns

In Windows, to achieve the same outcome, you must
combine CR with LF. This will result in, first, the generation
of a new line, and then, the return of the cursor to the start
of the line.

Which of these special characters should you use in your
Arduino sketches?

Well, it depends on the application (you probably expected
this).

For example, if the application involves the parsing of a web
page, which is encoded in an HTTP message, and we want to
know when the header has been received, then we can look
for a CR + LF combination. We search for CR + LF because
this is required by the HTTP standard.

But here’s a simple trick: because in HTTP messages, CR and
LF almost always appear together, we can reduce the
workload of the Arduino by trying to detect one or the other.
This realisation cuts not only the workload, but also the
complexity of the parsing code.

Another thing to consider is that the HTTP standard is
tolerant regarding the use a line feed (LF) to mark the end of
a line; this is not strictly correct, but it is widespread and
works just fine. This is why in Arduino sketches that parse
HTTP messages (like the one in the top of this article), you
see that the code will try to detect line feeds (LF, “n”), and
ignore carriage returns (CR).

Extracted from https://techexplorations.com
Page 49

https://en.wikipedia.org/wiki/Parsing
https://en.wikipedia.org/wiki/HTTP_message_body
https://en.wikipedia.org/wiki/List_of_HTTP_header_fields

New to the Arduino?

Arduino Step by Step Getting Started is our most popular
course for beginners.

This course is packed with high-quality video, mini-projects,
and everything you need to learn Arduino from the ground
up. We’ll help you get started and at every step with top-
notch instruction and our super-helpful course discussion
space.

Learn more

Jump to another article

Extracted from https://techexplorations.com
Page 50

https://wp.techexplorations.com/wp-content/uploads/2020/01/DSC_0114-1000h-square.jpg
https://mpl-publisher.com/so/asbsgs2/

1. PWM and buffer overflow

2. What is the “baud” rate?

3. Focus on the type parameter in “println()”

4. “0” or “A0” when used with analogRead()?

5. What is the “_t” in “uint8_t”?

6. Save SRAM with the F() macro

7. What is the gibberish in the Telnet output?

8. The Arduino map() function

9. Confusing keywords? follow the source code trail

10. The interrupt service routine and volatile variables

11. The problem with delay() and how to fix it

12. How to deal with the millis rollover

13. Can you use delay() inside Interrupt Service Routine?

14. The ternary operator

15. A closer look at line feeds and carriage returns

16. Understanding references and pointers

17. Simple multitasking on the Arduino

18. Boolean arrays

Extracted from https://techexplorations.com
Page 51

https://wp.techexplorations.com/guides/arduino/programming/pwm-buffer-overflow/
https://wp.techexplorations.com/guides/arduino/programming/pwm-buffer-overflow/
https://mpl-publisher.com/guides/arduino/programming/baud-rate/
https://mpl-publisher.com/guides/arduino/programming/type-parameter-in-println/
https://mpl-publisher.com/guides/arduino/programming/0-or-a0-analogread/
https://mpl-publisher.com/guides/arduino/programming/_t-in-uint8_t/
https://mpl-publisher.com/guides/arduino/programming/f-macro/
https://mpl-publisher.com/guides/arduino/programming/gibberish-in-telnet-output/
https://mpl-publisher.com/guides/arduino/programming/map-function/
https://mpl-publisher.com/guides/arduino/programming/follow-the-trail/
https://mpl-publisher.com/guides/arduino/programming/interrupts-volatile/
https://mpl-publisher.com/guides/arduino/programming/delay/
https://mpl-publisher.com/guides/arduino/programming/millis-rollover/
https://mpl-publisher.com/guides/arduino/programming/delay-print-in-isr/
https://mpl-publisher.com/guides/arduino/programming/ternary-operator/
https://mpl-publisher.com/guides/arduino/programming/line-feeds-and-carriage-returns/
https://mpl-publisher.com/guides/arduino/programming/references-and-pointers/
https://mpl-publisher.com/guides/arduino/programming/simple-multitasking-arduino/
https://mpl-publisher.com/guides/arduino/programming/boolean-arrays/

19. Concurrency with the Scheduler library on the Arduino
Due and Zero

20. Bitshift and bitwise OR operators

21. What is a “static” variable and how to use it

22. Understanding the volatile modifier

23. Optiboot, a free upgrade for your Arduino

24. A real-time OS for the Arduino

Extracted from https://techexplorations.com
Page 52

https://mpl-publisher.com/guides/arduino/programming/scheduler-library-arduino-due-and-zero/
https://mpl-publisher.com/guides/arduino/programming/scheduler-library-arduino-due-and-zero/
https://mpl-publisher.com/guides/arduino/programming/bitshift-bitwise/
https://mpl-publisher.com/guides/arduino/programming/static/
https://mpl-publisher.com/guides/arduino/programming/volatile/
https://mpl-publisher.com/guides/arduino/programming/optiboot/
https://mpl-publisher.com/guides/arduino/programming/freertos/

16. Understanding references and
pointers

Arduino programming guide series

Understanding references and
pointers
The topic of memory pointers in C and C++ is a known cause
of intense headaches for many of us. It is the one topic that
will most often scare people away from C/C++ and into
“higher level” languages like Python and Ruby. But, with a
bit of patience, you can understand it.

Extracted from https://techexplorations.com
Page 53

Attribution of the image above: This file was made by User
S v e n . O r i g i n a l :
https://commons.wikimedia.org/w/index.php?curid=886143
2

Even though microcontrollers are becoming increasingly
powerful and able to support languages like Python, Lua and
Javascript, the traditional C/C++ toolbox is still dominant
and not going anywhere. With a bit of effort, you can learn
how to use C and C++.

And yes, that includes figuring out how memory pointers
work!

Extracted from https://techexplorations.com
Page 54

https://en.wikipedia.org/wiki/Microcontroller
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Lua_(programming_language)
https://en.wikipedia.org/wiki/JavaScript

In this article, I will help you understand how the “*” and
“&” memory operators work with the help of a simple
example.

I will use this sketch below (you can also see it on Github):

[t c b - s c r i p t
src=”https://gist.github.com/futureshocked/c548c64abb5cac
ed4bdc4981ec02df1b.js”][/tcb-script]

In the sketch, I manipulate primitive and object variables by
reference, pointers, and value.

Every time I make a change to a stored value, pointer or
reference, I print out the remaining memory on the Arduino;
this allows us to get a glimpse of the effect that a particular
operation has on the memory, and in particular the static
RAM (SRAM).

A few things are worth noting here:

The reference operator “&” is used to extract the memory
location where the data of a variable is stored.

For example, look at line 29:

pointer = &a;

Here, we are getting the memory location where the value
for the int variable “a” is stored, and we store this memory
location to pointer “pointer“.

The pointer operator “*” designates a variable as a pointer.
This means that whatever is stored in this variable is a
pointer to another memory location. Again in line 29, the

Extracted from https://techexplorations.com
Page 55

https://gist.github.com/futureshocked/c548c64abb5caced4bdc4981ec02df1b
https://en.wikipedia.org/wiki/Reference_(computer_science)
https://en.wikipedia.org/wiki/Pointer_(computer_programming)
https://en.wikipedia.org/wiki/Value_(computer_science)
https://en.wikipedia.org/wiki/Static_random-access_memory
https://en.wikipedia.org/wiki/Operators_in_C_and_C%2B%2B#Member_and_pointer_operators
https://en.wikipedia.org/wiki/Operators_in_C_and_C%2B%2B#Member_and_pointer_operators

variable “pointer” will not contain the value that is stored in
“a“, but the memory location that we stored in variable “a“.

You can re-assign pointers just like any other variable. For
example, in line 40, I re-assign the “pointer” variable to
point to int “b“, instead of the original “a“.

When it comes to passing values to functions, it can be done
in three ways: by reference, pointer, or by value.

When you pass an actual value to a function (instead of a
reference or pointer to that value), you are creating a copy of
that value that “lives” inside the context of the function.

When the value is a primitive (like an int or a char), this not
too expensive in terms of memory utilization.

But when it is an object, like a String, then the memory
consumption can be significant.

The lesson to take home: pass object values to functions as a
reference or as a pointer.

See the examples in lines 50 and 56, and note how these
target functions are declared.

If you want to pass a primitive, you can consider using
references or pointers if the size of the primitive is larger
than the size of the pointer.

In the Arduino Uno, an int takes up 2 bytes in SRAM. The
SRAM address uses 1 byte. Therefore, by using a pointer to
reference a value, you can save 1 byte of SRAM.

A double primitive consumes 4 bytes, so by using a pointer

Extracted from https://techexplorations.com
Page 56

https://www.arduino.cc/reference/en/language/variables/data-types/int/
https://www.arduino.cc/reference/en/language/variables/data-types/char/
https://www.arduino.cc/reference/en/language/variables/data-types/stringobject/
https://www.arduino.cc/reference/en/language/variables/data-types/double/

you can save 3 bytes.

What’s better: references or pointers?

My research does not indicate strongly that one is better
than the other. I personally prefer references.

Have a look at line 84, and compare it with line 89. I think
that the calling code in line 84 looks cleaner. There seems to
be no difference in terms of memory or compiler efficiency.

Feel free to play around with the sketch. Experiment with it
by making changes to the memory operators so you can get a
first-hand impression of the memory footprint of the
examples.

Experiment output:

freeMemory()=1774 freeMemory()=1774 1 —– a —– a=5 a=6
f r e e M e m o r y () = 1 7 7 4 2 — – b — – b = 1 0 b = 1 1
freeMemory()=1774 3 —– Passing by reference —–
6freeMemory()=1770 3 —– Passing by reference —– 11
freeMemory()=1770 4 —– Passing by pointer —– 11
freeMemory()=1770 4 —– Passing by pointer —–
6freeMemory()=1770 5 —– Passing by value—–
6freeMemory()=1770 5 —– Passing by value—– 11
freeMemory()=1770 6 ——- String a —– string a=Hello
World! freeMemory()=1744 7 ——- String b —– string
b=Hello again! freeMemory()=1744 8 —– Passing String by
reference —– Hello World! freeMemory()=1740 8 —– Passing
String by reference —– Hello again! freeMemory()=1740 9
—– Passing Str ing by pointer —– Hello World!
freeMemory()=1740 9 —– Passing String by pointer —–
Hello again! freeMemory()=1740 10 —– Passing String by
value—– Hello World! freeMemory()=1725 10 —– Passing

Extracted from https://techexplorations.com
Page 57

https://gist.github.com/futureshocked/c548c64abb5caced4bdc4981ec02df1b

String by value—– Hello again! freeMemory()=1725

New to the Arduino?

Arduino Step by Step Getting Started is our most popular
course for beginners.

This course is packed with high-quality video, mini-projects,
and everything you need to learn Arduino from the ground
up. We’ll help you get started and at every step with top-
notch instruction and our super-helpful course discussion
space.

Learn more

Extracted from https://techexplorations.com
Page 58

https://wp.techexplorations.com/wp-content/uploads/2020/01/DSC_0114-1000h-square.jpg
https://techexplorations.com/so/asbsgs2/

17. Simple multitasking on the
Arduino

Arduino programming guide series

Simple multitasking on the
Arduino
Simple multitasking on the Arduino

The bulk of CPUs used in desktop or laptop computers ten or
fifteen years ago where also mostly single-core, as opposed
to modern multi-core systems. Despite this “handicap”,
they were able to execute multiple processes at, seemingly,
the same time (concurrently). You could have your web
browser rendering a web page while your email client was
downloading a bunch of emails.

Extracted from https://techexplorations.com
Page 59

https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Multi-core_processor

How was this possible?

And if it was possible to have multitasking on a single-core
computer CPU ten years ago, why not have the same ability
on a single-core microcontroller?

The key to multitasking is efficient and clever programming.
Thanks to multitasking infrastructure integrated into
modern operating systems, it was possible to divide CPU
time into small chunks and allocate each chunk to a different
process. The operating system was responsible for allocating
these time chunks to the processes that needed them based
on various scheduling algorithms. Even though the
resources that a desktop CPU has been vastly superior to
those that a microcontroller has, the key ingredient is the
same: time.

The Arduino has no operating system.

Therefore, if we want to implement multitasking, we will
have to create at least a basic infrastructure that supports it.
We also have to create a sketch that also implements the
functionalities we need.

In a desktop operating system, scheduling does exactly what
the word says:

Start Process A at time X and stop it after Yms.1.

Start Process B at time X+5 and end it at time Zms.2.

And so on.

Let’s say that Process A is turning a red LED on (connected to
pin 9), and Process B is turning a green LED on (connected to

Extracted from https://techexplorations.com
Page 60

https://en.wikipedia.org/wiki/Computer_multitasking
https://en.wikipedia.org/wiki/Operating_system

pin 8).

Usually, if we want to turn an LED on for 100ms, then turn it
off, we would do it like this?

digitalWrite(9,HIGH);delay(100);digitalWrite(9,LOW);

The LED will turn on, then 100ms later will turn off. The
microcontroller will be locked for anything other than an
external interrupt for 100ms.

If we needed to turn on the green LED 5ms after the red LED
turned on, we would not be able to do it using delay() because
the microcontroller is still counting milliseconds for the red
LED.

We will have to wait until the red LED is turned off, a whole
95ms after then the actual time that we wanted the green
LED to turn on:

digitalWrite(9,HIGH);delay(100);digitalWrite(9,LOW);digital
Write(8,HIGH);delay(100);digitalWrite(8,LOW);

This is an example of how using delay() forces us to
implement strictly single-processing systems, and how it
forbids certain functionalities, like turning the green LED on
while the microcontroller is locked in the delay() function.

In a separate article, I explained how to use a common
technique that can help us to avoid the use of the delay()
function. By avoiding the delay function, we can utilze the
otherwise wasted compute cycles and get closer to a multi-
tasking environment on an Arduino board.

Here, I would like to expand on what I wrote about delay() in

Extracted from https://techexplorations.com
Page 61

https://www.arduino.cc/reference/en/language/functions/time/delay/
https://mpl-publisher.com/guides/arduino/programming/delay/

that article and give an example of how you can use the
technique I described there to implement basic multitasking.

In the example that follows, I use this technique to show you
how to create a sketch that blinks two LEDs, red and green,
according to my desired schedule. For example, turn the red
LED on at time X, green LED on at time X+5, red LED off at
time X+100, and green LED off at time X+103.

Notice: the actual timings in the sketch may be different,
as I have been playing around with it.

Total ON time for LEDA is 100ms, and for LEDB is 98ms.

Let’s also make the total OFF LEDA time 200ms and for
LEDB 250ms.

You can copy the sketch from the Gist on Github.

[t c b - s c r i p t
src=”https://gist.github.com/futureshocked/d9b84613e0c142
30369afd0bade9f5c5.js”][/tcb-script]

Run this sketch on an Arduino with two LED connected, and
you will see something like this:

Extracted from https://techexplorations.com
Page 62

https://wp.techexplorations.com/guides/arduino/programming/delay-print-in-isr/
https://gist.github.com/futureshocked/d9b84613e0c14230369afd0bade9f5c5

In this example sketch, for each LED (or time-dependent
function that we want to implement), we use four variables
to create a schedule:

The total elapsed time for the ON LED state

The total elapsed time for the OFF LED state

The last time we made a change to the state of the led.

The offset.

The pattern is this: if the time we want the LED to be in a
specific state has elapsed, move it to the other state. The
offset value is used to “push” the ON/OFF cycle forward in
time; this is useful if you wish to schedule more than one
activities to start at different times.

The result of this time of programming method is known as
a “state machine.” A state machine is a program or a
machine which can be only in one of several states at any

Extracted from https://techexplorations.com
Page 63

https://en.wikipedia.org/wiki/Finite-state_machine

given time. The specific state in which the machine will be
depend on rules, which in turn rely solely on past and
present conditions. There are state machines that have
states that are deterministic, or non-deterministic.

For example, in our sketch, a rule determines that if 5ms
have elapsed and LEDA if OFF, then LEDA should become
ON.

The state of this LED will not change unless another rule is
triggered in the future which will take into account the state
of the LED and of other variables that describe its
environment (in our case, just the millis and the last time
that the state of LEDA was changed) to decide if LEDA should
be turned OFF.

Using the state machine paradigm, you can implement the
efficiency of multitasking on your Arduino.

Indeed, this kind of manual multitasking is not as easy as
multitasking is on the desktop. The absence of an operating
system means that you, the programmer, have to design the
scheduling rules and then implement them in code.

For a small number of states, this is a manageable problem.

What if you have more complicated requirements? Good
news: There are ways to abstract multitasking on
microcontrollers using libraries! But, this is something for
another article in this series.

Extracted from https://techexplorations.com
Page 64

https://en.wikipedia.org/wiki/Deterministic_finite_automaton
https://en.wikipedia.org/wiki/Nondeterministic_finite_automaton
https://www.arduino.cc/en/Reference/Scheduler

New to the Arduino?

Arduino Step by Step Getting Started is our most popular
course for beginners.

This course is packed with high-quality video, mini-projects,
and everything you need to learn Arduino from the ground
up. We’ll help you get started and at every step with top-
notch instruction and our super-helpful course discussion
space.

Learn more

Jump to another article

Extracted from https://techexplorations.com
Page 65

https://wp.techexplorations.com/wp-content/uploads/2020/01/DSC_0114-1000h-square.jpg
https://mpl-publisher.com/so/asbsgs2/

1. PWM and buffer overflow

2. What is the “baud” rate?

3. Focus on the type parameter in “println()”

4. “0” or “A0” when used with analogRead()?

5. What is the “_t” in “uint8_t”?

6. Save SRAM with the F() macro

7. What is the gibberish in the Telnet output?

8. The Arduino map() function

9. Confusing keywords? follow the source code trail

10. The interrupt service routine and volatile variables

11. The problem with delay() and how to fix it

12. How to deal with the millis rollover

13. Can you use delay() inside Interrupt Service Routine?

14. The ternary operator

15. A closer look at line feeds and carriage returns

16. Understanding references and pointers

17. Simple multitasking on the Arduino

18. Boolean arrays

Extracted from https://techexplorations.com
Page 66

https://wp.techexplorations.com/guides/arduino/programming/pwm-buffer-overflow/
https://wp.techexplorations.com/guides/arduino/programming/pwm-buffer-overflow/
https://mpl-publisher.com/guides/arduino/programming/baud-rate/
https://mpl-publisher.com/guides/arduino/programming/type-parameter-in-println/
https://mpl-publisher.com/guides/arduino/programming/0-or-a0-analogread/
https://mpl-publisher.com/guides/arduino/programming/_t-in-uint8_t/
https://mpl-publisher.com/guides/arduino/programming/f-macro/
https://mpl-publisher.com/guides/arduino/programming/gibberish-in-telnet-output/
https://mpl-publisher.com/guides/arduino/programming/map-function/
https://mpl-publisher.com/guides/arduino/programming/follow-the-trail/
https://mpl-publisher.com/guides/arduino/programming/interrupts-volatile/
https://mpl-publisher.com/guides/arduino/programming/delay/
https://mpl-publisher.com/guides/arduino/programming/millis-rollover/
https://mpl-publisher.com/guides/arduino/programming/delay-print-in-isr/
https://mpl-publisher.com/guides/arduino/programming/ternary-operator/
https://mpl-publisher.com/guides/arduino/programming/line-feeds-and-carriage-returns/
https://mpl-publisher.com/guides/arduino/programming/references-and-pointers/
https://mpl-publisher.com/guides/arduino/programming/simple-multitasking-arduino/
https://mpl-publisher.com/guides/arduino/programming/boolean-arrays/

19. Concurrency with the Scheduler library on the Arduino
Due and Zero

20. Bitshift and bitwise OR operators

21. What is a “static” variable and how to use it

22. Understanding the volatile modifier

23. Optiboot, a free upgrade for your Arduino

24. A real-time OS for the Arduino

Done with the basics? Looking for more advanced
topics?

Arduino Step by Step Getting Serious is our comprehensive

Extracted from https://techexplorations.com
Page 67

https://mpl-publisher.com/guides/arduino/programming/scheduler-library-arduino-due-and-zero/
https://mpl-publisher.com/guides/arduino/programming/scheduler-library-arduino-due-and-zero/
https://mpl-publisher.com/guides/arduino/programming/bitshift-bitwise/
https://mpl-publisher.com/guides/arduino/programming/static/
https://mpl-publisher.com/guides/arduino/programming/volatile/
https://mpl-publisher.com/guides/arduino/programming/optiboot/
https://mpl-publisher.com/guides/arduino/programming/freertos/

Arduino course for people ready to go to the next level.

Learn about Wifi, BLE and radio, motors (servo, DC and
stepper motors with various controllers), LCD, OLED and TFT
screens with buttons and touch interfaces, control large
loads like relays and lights, and much much MUCH more.

Learn more

Extracted from https://techexplorations.com
Page 68

https://mpl-publisher.com/so/asbsgsr1/

18. Boolean arrays

Arduino programming guide series

Boolean arrays
It is a common practice to use arrays to store chars, ints, or
double values.But arrays can also store booleans. Here’s
how.

A boolean data-type is one that can take only two possible
values. Usually these values are depicted as “TRUE” or
“FALSE”. You can also see them as “ON” or “OFF”, or “1” or
“0”.

You may intuitively think that a boolean data-type can be
stored with a single bit, instead of a full byte. Let’s correct
this right now: A boolean data type may be one of two
possible values, but it still takes a full byte to store it in

Extracted from https://techexplorations.com
Page 69

https://en.wikipedia.org/wiki/Boolean_data_type
https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/Byte

SRAM.

Still, even though boolean data-types will not save an SRAM,
they are better suited than alternatives, like int or byte in
many applications.

Let’s look at an example.

Imagine that you have a set of dip switches connected to the
digital pins of an Arduino.

Let’s say that your dip switches are configured to produce
the code “0101” in digital pins 3, 4, 5, 6.

You can capture this code and store it into a boolean array
like this:

boolean dip_switch[4];dip_switch[0] = digitalRead(3); // a
boolean data typedip_switch[1] = digitalRead(4); // a boolean
data typedip_switch[2] = digitalRead(5); // a boolean data
typedip_switch[3] = digitalRead(6); // a boolean data type

Extracted from https://techexplorations.com
Page 70

https://en.wikipedia.org/wiki/SRAM
https://en.wikipedia.org/wiki/DIP_switch

The configuration of the DIP switches is now stored in an
array of type “boolean“.

Boolean is a non-standard data type defines in the Arduino
language, that is identical to the bool data type. In this
example code, you could substitute “boolean” for “bool”
without changing the outcome. In fact, the Arduino
documentation recommends that you use “bool” instead of
“boolean”.

If you want to treat the dip_switch array as a half-byte word,
then you can convert it to a decimal. You can do this with
this code:

byte encodebool(boolean* arr){ byte val = 0; for (int i = 0;
i<4; i++) { val << = = 1; if (arr[i]) val | = 1; } return val; }

If dip_switch contains “0,1,0,1”, then encodebool(dip_switch)
will return “5”.

With this simple example, you can use a DIP switch, store
the positions of its switches to a boolean array, and convert
the half-byte set on the DIP switch to a decimal on demand.

Extracted from https://techexplorations.com
Page 71

https://www.arduino.cc/reference/en/language/variables/data-types/boolean/
https://www.arduino.cc/reference/en/language/variables/data-types/bool/

19. Concurrency with the
Scheduler library on the Arduino

Due and Zero

Arduino programming guide series

Concurrency with the Scheduler
library on the Arduino Due and
Zero
The Arduino Due and Arduino Zero are far more powerful
than the Arduino Uno. They use microcontrollers based on
32-bit ARM technology. With the help of the Scheduler
library, you can use them as potent multitasking machines.

As I explained in a separate article on multitasking on the
Arduino Uno, it is possible to use simple “if” structures and
the millis() function to execute arbitrary functions at specific
intervals.

Once the number of concurrent functions increases to more
then two or three, this method becomes too complicated. At
that point, you can use a more sophisticated approach.

Extracted from https://techexplorations.com
Page 72

https://mpl-publisher.com/guides/arduino/programming/simple-multitasking-arduino/
https://www.arduino.cc/reference/en/language/functions/time/millis/

One such approach is implemented with the Scheduler
library.

With the Scheduler library, you can set up multiple tasks
within your sketch. Each task will be executed concurrently,
and independently of each other. Remember that just like
with the Arduino Uno, the Arduino Due and Zero are both
single-core machines. Therefore, each task will be executed
individually even though the effect is that they are all
running concurrently.

The effect of concurrency amounts to the ability of the
processor to move from one task to the other before it is
completed and then to return later to continue where it left
off.

Although you only have very basic control over the actual
timing of execution, the greatest advantage of this library is
its simplicity.

To understand what I mean by this, I have written a simple
sketch to implement this functionality:

This is an Arduino Due controlling 4 LEDs. Each LED is
toggling on/off on schedule, and each schedule is
independent.

#include <Scheduler.h>int led_red = 11;int led_green =
10;int led_yellow = 9;int led_orange = 8;void setup() {
pinMode(led_red, OUTPUT); pinMode(led_green, OUTPUT);

Extracted from https://techexplorations.com
Page 73

https://www.arduino.cc/reference/en/libraries/scheduler/
https://www.arduino.cc/reference/en/libraries/scheduler/
https://en.wikipedia.org/wiki/Concurrency_(computer_science)

pinMode(led_yellow, OUTPUT); pinMode(led_orange,
OUTPUT); Scheduler.startLoop(control_red);
S c h e d u l e r . s t a r t L o o p (c o n t r o l _ g r e e n) ;
S c h e d u l e r . s t a r t L o o p (c o n t r o l _ y e l l o w) ;
Scheduler.startLoop(control_orange);}void loop() { yield(); //
This is important. With yield, control will be passed to one of
the other tasks.}void control_red(){ digitalWrite(led_red,
HIGH); delay(300); // Control is passed to one of the other
tasks. digitalWrite(led_red, LOW); delay(300); // Control is
passed to one of the other tasks.}void control_green(){
digitalWrite(led_green, HIGH); delay(400); // Control is
passed to one of the other tasks. digitalWrite(led_green,
LOW); delay(400); // Control is passed to one of the other
tasks.}void control_yellow(){ digitalWrite(led_yellow,
HIGH); delay(500); // Control is passed to one of the other
tasks. digitalWrite(led_yellow, LOW); delay(500); // Control
is passed to one of the other tasks.}void control_orange(){
digitalWrite(led_orange, HIGH); delay(600); // Control is
passed to one of the other tasks. digitalWrite(led_orange,
LOW); delay(600); // Control is passed to one of the other
tasks.}

First, install the library to your IDE (it does not ship by
default).

To set up a task, use the Scheduler’s start loop function, and
pass the name of the function that implements the task as
the parameter. You can have as many of them as you like.

In this example, we set up four tasks. Each one controls an
LED and turns it on and off.

In the loop() function, there is only one instruction: “yield()”
this allows the control of the execution to be given to one of
the other tasks.
Which one? The scheduler will decide. If you are curious

Extracted from https://techexplorations.com
Page 74

about the details, you can have a look at the library source
code.

The gist is that the Scheduler implements cooperative
multitasking. In simple terms, this means that the scheduler
depends on the executing task to relinquish control; this is
what the yield function does. It tells the scheduler that it is
ok for another task to be executed at this point. The library
will also use the delay function to “know” when it is ok to
transfer control to another task.

For the end user, me and you, this means that to use the
Scheduler library we only need to use the yield() and delay()
functions to signal to the scheduler that control can be
transferred to another task. We can use these functions at
any point in the sketch where it makes sense.

For example, have a look at function control_orange. I am
making an LED blink, and as usual, I use the delay function
to keep the LED at a particular state for, in this case, 600ms.
If we were not using the Scheduler library, at this point the
complete program would block the execution. Nothing else
would happen until this delay was complete.

But in this example, we are using the Scheduler library, so
instead of the program blocking, the control is simply
transferred to another task.

This way, CPU wasted cycles are minimized, and you get a
much more efficient design for minimal additional effort.

You can use the yield function instead of delay, with the
same result, as I did in the loop function.

If you have a Due or a Zero around, I encourage you to play

Extracted from https://techexplorations.com
Page 75

https://github.com/arduino-libraries/Scheduler
https://github.com/arduino-libraries/Scheduler
https://en.wikipedia.org/wiki/Cooperative_multitasking
https://en.wikipedia.org/wiki/Cooperative_multitasking

with the Scheduler library to become familiar with it. Think
about how your next project can use it so you can take
advantage of the efficiency it offers.

New to the Arduino?

Arduino Step by Step Getting Started is our most popular
course for beginners.

This course is packed with high-quality video, mini-projects,
and everything you need to learn Arduino from the ground
up. We’ll help you get started and at every step with top-
notch instruction and our super-helpful course discussion
space.

Extracted from https://techexplorations.com
Page 76

https://wp.techexplorations.com/wp-content/uploads/2020/01/DSC_0114-1000h-square.jpg

Learn more

Jump to another article

1. PWM and buffer overflow

2. What is the “baud” rate?

3. Focus on the type parameter in “println()”

4. “0” or “A0” when used with analogRead()?

5. What is the “_t” in “uint8_t”?

6. Save SRAM with the F() macro

7. What is the gibberish in the Telnet output?

8. The Arduino map() function

9. Confusing keywords? follow the source code trail

10. The interrupt service routine and volatile variables

11. The problem with delay() and how to fix it

12. How to deal with the millis rollover

13. Can you use delay() inside Interrupt Service Routine?

14. The ternary operator

15. A closer look at line feeds and carriage returns

16. Understanding references and pointers

Extracted from https://techexplorations.com
Page 77

https://mpl-publisher.com/so/asbsgs2/
https://wp.techexplorations.com/guides/arduino/programming/pwm-buffer-overflow/
https://wp.techexplorations.com/guides/arduino/programming/pwm-buffer-overflow/
https://mpl-publisher.com/guides/arduino/programming/baud-rate/
https://mpl-publisher.com/guides/arduino/programming/type-parameter-in-println/
https://mpl-publisher.com/guides/arduino/programming/0-or-a0-analogread/
https://mpl-publisher.com/guides/arduino/programming/_t-in-uint8_t/
https://mpl-publisher.com/guides/arduino/programming/f-macro/
https://mpl-publisher.com/guides/arduino/programming/gibberish-in-telnet-output/
https://mpl-publisher.com/guides/arduino/programming/map-function/
https://mpl-publisher.com/guides/arduino/programming/follow-the-trail/
https://mpl-publisher.com/guides/arduino/programming/interrupts-volatile/
https://mpl-publisher.com/guides/arduino/programming/delay/
https://mpl-publisher.com/guides/arduino/programming/millis-rollover/
https://mpl-publisher.com/guides/arduino/programming/delay-print-in-isr/
https://mpl-publisher.com/guides/arduino/programming/ternary-operator/
https://mpl-publisher.com/guides/arduino/programming/line-feeds-and-carriage-returns/
https://mpl-publisher.com/guides/arduino/programming/references-and-pointers/

17. Simple multitasking on the Arduino

18. Boolean arrays

19. Concurrency with the Scheduler library on the Arduino
Due and Zero

20. Bitshift and bitwise OR operators

21. What is a “static” variable and how to use it

22. Understanding the volatile modifier

23. Optiboot, a free upgrade for your Arduino

24. A real-time OS for the Arduino

Extracted from https://techexplorations.com
Page 78

https://mpl-publisher.com/guides/arduino/programming/simple-multitasking-arduino/
https://mpl-publisher.com/guides/arduino/programming/boolean-arrays/
https://mpl-publisher.com/guides/arduino/programming/scheduler-library-arduino-due-and-zero/
https://mpl-publisher.com/guides/arduino/programming/scheduler-library-arduino-due-and-zero/
https://mpl-publisher.com/guides/arduino/programming/bitshift-bitwise/
https://mpl-publisher.com/guides/arduino/programming/static/
https://mpl-publisher.com/guides/arduino/programming/volatile/
https://mpl-publisher.com/guides/arduino/programming/optiboot/
https://mpl-publisher.com/guides/arduino/programming/freertos/

Done with the basics? Looking for more advanced
topics?

Arduino Step by Step Getting Serious is our comprehensive
Arduino course for people ready to go to the next level.

Learn about Wifi, BLE and radio, motors (servo, DC and
stepper motors with various controllers), LCD, OLED and TFT
screens with buttons and touch interfaces, control large
loads like relays and lights, and much much MUCH more.

Learn more

Extracted from https://techexplorations.com
Page 79

https://mpl-publisher.com/so/asbsgsr1/

20. Bitshift and bitwise OR
operators

Arduino programming guide series

Bitshift and bitwise OR operators
Programming a microcontroller entails much more bit-level
manipulation than what is common in general computer
programming. Bitwise operators like “<<“, “>>” and “|” are
essential. Let’s look at two of the most common bitwise
operators, bitshift right and bitwise OR.

This is a follow up to a separate article (boolean arrays) in
this series, where I discussed boolean arrays.

Some of the feedback I received in relation to that article
asked for an explanation of what the operators “<<“ (bitshift
left) and “|” (bitwise OR) do.

In this article, I will explain the functionality of these
operators, drawing from the code in boolean arrays article.

First, I will remind you of the relevant part from the example
code from the boolean arrays article.

Extracted from https://techexplorations.com
Page 80

https://techexplorations.com/guides/arduino/programming/boolean-arrays/
https://www.arduino.cc/reference/en/language/structure/bitwise-operators/bitshiftleft/
https://www.arduino.cc/reference/en/language/structure/bitwise-operators/bitshiftleft/
https://www.arduino.cc/reference/en/language/structure/bitwise-operators/bitwiseor/
https://mpl-publisher.com/guides/arduino/programming/boolean-arrays/

[t c b - s c r i p t
src=”https://gist.github.com/futureshocked/6117638a32dc36
e0127c1cfd4d0fe935.js”][/tcb-script]

The symbol “<<” is the binary bitshift left operator.

It takes a number like “0001000 and shifts (moves) every bit
in it to the left.

The number of shifts can be controlled through the
parameter given on the right side of the operator. In this
example, the parameter is “1”, so the result of this operation
will be “0010000.

When you add the assignment “=“ operator to the bit-shift
operator, so that the two operators together are “<<=“, then
you have the binary left shift with assignment operator.

This will take the shifted value and store it in the “val”
variable, on the left side of the expression.

The exact same, but in reverse, will happen if you use the
bitshift right operator “>>”.

Next, “|” is the bitwise OR operator.

When you add the “=” operator, you have this compound
operator: “|=“.

This is the bitwise inclusive OR with assignment operator.

In the example code, it works as shorthand for “val |= 1“.

The full hand notation would be “val = val | 1“. It is similar
to the way that the expression “val += 1” is short for “val =

Extracted from https://techexplorations.com
Page 81

https://www.arduino.cc/reference/en/language/structure/bitwise-operators/bitshiftleft/
https://www.arduino.cc/reference/en/language/structure/bitwise-operators/bitshiftright/
https://www.arduino.cc/reference/en/language/structure/bitwise-operators/bitwiseor/
https://www.arduino.cc/reference/en/language/structure/bitwise-operators/bitwiseor/

val + 1“.

Here’s an example:

If val is “0001000, then “val | 1” would be “0001001” (since
1 = 0000001).

Therefore, “val |= 1” would result to val containing the value
“0001001”. Perhaps this make more sense if we arrange the
OR calculation like this:

val 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 —————val 0 0 0 1 0 0 1

In binary OR, 1|1 = 1, 1|0 = 1, 0|1 = 1, and 0|0=0.

When the function starts execution, val is initialized to 0.
Inside the “for” loop, the first time that the bitshift operator
is called has no effect on the value of val. Bitshifting
“0000000” will still give you “0000000“.

But lets say that arr[0] = 1.

When the sketch hits the next line, “if (arr[i]) val |= 1;“,
then val will become “0000001“.

And when the block loops back to the “for” instruction in
line 4, and the bitshift operation is executed again (“val <<=
1;”), then val will become “0000010“.

And so on.

See how essentially the contents of the arr array are copied
into the val byte variable, one bit at a time?

Extracted from https://techexplorations.com
Page 82

21. What is a static variable and
 how to use it

Arduino programming guide series

What is a “static” variable and
how to use it
The C language contains special keywords that modify the
way a variable behaves. One of them is the keyword “static”.
The way it works is not obvious, so I have created a series of
experiments to help you understand.

A static variable is used to preserve the value of a variable.
When you mark a variable as static, its value is preserved in
your program until the program ends.

Think of a static variable as if it was global, with a reduced
scope. A global variable has global scope, and it is preserved
for as long as the program runs. A static variable has local
scope, but is also preserved for as long as the program runs.

You would normally use a static variable in cases where you
wish to preserve the value of a variable inside a function.

Extracted from https://techexplorations.com
Page 83

https://en.wikipedia.org/wiki/Static_variable

Normal local variables are destroyed when the function
completes and recreated/instantiated when the function is
called.

Let’s use an example to help understand the behavior of a
static variable.

Consider this code, “sample A”, which you can get from
Github:

[t c b - s c r i p t
src=”https://gist.github.com/futureshocked/a5a194d73e9b4f
ffd0471bc06e294b81.js”][/tcb-script]

Upload the sketch to your Arduino and open the serial
monitor. The monitor will show this output:

In a_function: 0 In a_function: 0 In a_function: 0 In
a_function: 0 In a_function: 0 In a_function: 0 In
a_function: 0 In a_function: 0

The counter remains “0” because each time the a_fuction is
called, the local variable local_variable is re-declared and re-
initialized to “0”. Even though in line 16, the value of the
local variable is incremented by one, the new value is lost.

Now consider this code, “sample B”, which you can get from
Github:

[t c b - s c r i p t
src=”https://gist.github.com/futureshocked/4797583d5253ff
86485e743378430024.js”][/tcb-script]

Upload the sketch to your Arduino and open the serial
monitor. The monitor will show this output:

Extracted from https://techexplorations.com
Page 84

https://gist.github.com/futureshocked/a5a194d73e9b4fffd0471bc06e294b81
https://gist.github.com/futureshocked/a5a194d73e9b4fffd0471bc06e294b81
https://gist.github.com/futureshocked/4797583d5253ff86485e743378430024
https://gist.github.com/futureshocked/4797583d5253ff86485e743378430024

In a_function: 0 In loop: 1 In a_function: 1 In loop: 2 In
a_function: 2 In loop: 3 In a_function: 3 In loop: 4 In
a_function: 4 In loop: 5 In a_function: 5 In loop: 6 In
a_function: 6 In loop: 7 In a_function: 7 In loop: 8 In
a_function: 8 In loop: 9 In a_function: 9 In loop: 10

In this variation of the sketch, the variable local_variable is
made global by defining it and initializing it in line 1. Even
though this is a global variable, I decided to keep the original
name in order to maintain continuity between the examples.

Because the value of the local_variable is incremented inside
the a_function, and not re-initialized (as it did in the original
version of the sketch), the value is not lost. It is preserved
during the subsequent calls of the a_function function.

Now, consider the next variation of the code, “sample C”,
which you can get from Github:

[t c b - s c r i p t
src=”https://gist.github.com/futureshocked/8c05aca012ac1f
4d6e1bba8b772c27c5.js”][/tcb-script]

Upload the sketch to your Arduino and open the serial
monitor. The monitor will show this output:

In a_function: 0 In loop: 1 In a_function: 1 In loop: 2 In
a_function: 2 In loop: 3 In a_function: 3 In loop: 4 In
a_function: 4 In loop: 5 In a_function: 5 In loop: 6 In
a_function: 6 In loop: 7 In a_function: 7 In loop: 8 In
a_function: 8 In loop: 9 In a_function: 9 In loop: 10

The only difference between the sketches of variation B and
C is that in C, the variable local_variable is marked as static.

Extracted from https://techexplorations.com
Page 85

https://gist.github.com/futureshocked/8c05aca012ac1f4d6e1bba8b772c27c5

The output of the two sketches is identical.

Finally, consider the last variation of the code, “sample D”,
which you can get from Github:

[t c b - s c r i p t
src=”https://gist.github.com/futureshocked/e0220d413fc0fb
3f8d77f9ef4003da94.js”][/tcb-script]

Upload the sketch to your Arduino and open the serial
monitor. The monitor will show this output:

In a_function: 0In a_function: 1In a_function: 2In
a_function: 3In a_function: 4In a_function: 5In a_function:
6In a_function: 7In a_function: 8In a_function: 9In
a_function: 10

Isn’t this interesting?

In Sample D, the local_variable variable is marked as static,
but this time is declared inside the a_function function. As
per the first experiment, you would expect the the serial
monitor will show zeros as the variable is re-initialized in
line 13.

But it doesn’t.

Because local_variable is marked as static, its value is
preserved when the function finishes its execution. It is not
re-initialized when the same function is called again.

When will the contents of the static variable dissapear?
When the program ends, just like it happens for a global
variable.

Extracted from https://techexplorations.com
Page 86

https://gist.github.com/futureshocked/e0220d413fc0fb3f8d77f9ef4003da94

Let’s recap the outcome of these experiments.

In sample A, the monitor printout shows that the variable is
always 0. We expected that since the variable is defined and
initialized inside the function. Every time the function is
called in the loop, the variable is re-defined and initialized to
0.

In sample B, the variable local_variable is global. As
expected, both the loop and a_function functions have
access to it. Once it initialized, it increments by 1 inside
a_function, and the same value is printed to the monitor
from inside loop and a_function.

In sample C, we marked local_variable as static, and due to
its position, it is still globally accessible. The printout we get
is identical to the one we got from sample B. Declaring this
global variable as static has no effect on the outcome. The
compiler can even ignore this modifier.

Finally, in sample D, we move the declaration of the variable
inside the a_function function. At this point, the sketch is
identical to that of sample A. But in sample D, we use the
static modifier. The printout from the serial monitor shows
that the value of the variable is preserved between calls of
a_function.

What is the practical lesson of all this?

1. If you want to preserve the state of a variable across a
program, you can create it as a global variable. Marking it as
static does not change the fact that the value of the variable
will be preserved for the life of the program. However, a
global variable can be accessed anywhere in the program,
and this could cause defects. In large programs, and because

Extracted from https://techexplorations.com
Page 87

most Arduino hobbyists don’t have access to a debugger, it is
best to not use a global variable unless access to it is truly
globally required.

2. If you want to preserve the state of a function local
variable, mark it as static. You will get all the benefits of the
globally declared variable, without the problem described in
point 1.

New to the Arduino?

Arduino Step by Step Getting Started is our most popular
course for beginners.

Extracted from https://techexplorations.com
Page 88

https://wp.techexplorations.com/wp-content/uploads/2020/01/DSC_0114-1000h-square.jpg

This course is packed with high-quality video, mini-projects,
and everything you need to learn Arduino from the ground
up. We’ll help you get started and at every step with top-
notch instruction and our super-helpful course discussion
space.

Learn more

Extracted from https://techexplorations.com
Page 89

https://techexplorations.com/so/asbsgs2/
https://wp.techexplorations.com/guides/arduino/programming/pwm-buffer-overflow/
https://mpl-publisher.com/guides/arduino/programming/baud-rate/
https://mpl-publisher.com/guides/arduino/programming/type-parameter-in-println/
https://mpl-publisher.com/guides/arduino/programming/0-or-a0-analogread/
https://mpl-publisher.com/guides/arduino/programming/_t-in-uint8_t/
https://mpl-publisher.com/guides/arduino/programming/f-macro/
https://mpl-publisher.com/guides/arduino/programming/gibberish-in-telnet-output/
https://mpl-publisher.com/guides/arduino/programming/map-function/
https://mpl-publisher.com/guides/arduino/programming/follow-the-trail/
https://mpl-publisher.com/guides/arduino/programming/interrupts-volatile/
https://mpl-publisher.com/guides/arduino/programming/delay/
https://mpl-publisher.com/guides/arduino/programming/millis-rollover/
https://mpl-publisher.com/guides/arduino/programming/delay-print-in-isr/

22. Understanding the volatile
modifier

Arduino programming guide series

Understanding the volatile
modifier
Variables can be modified at different parts of a program.
Often, it is not possible to predict when a particular variable
may be accessed for a read or write operation. This is
particularly true when a variable is tied to an interrupt
service routine. So, how do we ensure that a variable always
contains a correct value? This is where the volatile modifier
comes in.

A volatile variable is a variable that stores a value that may

Extracted from https://techexplorations.com
Page 90

https://en.wikipedia.org/wiki/Volatile_(computer_programming)

change at any time from parts of the program that are not
related to each other. A volatile variable can be declared in a
part of the program, and then be modified out of context.

As such, when the compiler encounters a variable marked as
volatile, it does not “optimize” it. It will maintain a single
copy of this value in RAM (as opposed to RAM plus CPU a
register for faster access).

This way, the programmer sacrifices performance in return
for the simplicity of keeping a single copy of a variable,
referenced from any part of the program.

Confused?

Let’s drill into this.

Volatile variables are tricky to understand because you first
need to have a good understanding of how a CPU works, and
how a compiler generates the code that is executed inside
the CPU.

In a nutshell, the CPU has a component called “ALU”, short
for Arithmetic Logic Unit. It is where arithmetic calculations
take place. The CPU knows what to do by looking at an
instruction.

An instruction is made up of two things: an instruction code,
and the arguments.

For example:

MOV AL, 61h

…is composed of the instruction code “MOV” and arguments

Extracted from https://techexplorations.com
Page 91

https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Arithmetic_logic_unit
https://en.wikipedia.org/wiki/Instruction_set_architecture

“AL” and “61h”. It results in the value “61” (in hexadecimal)
being loaded (moved) into register “AL”. Arguments can be
fixed values or memory locations, or other registers.

These instructions are stored in memory. There are three
types of memory that a full CPU has direct access to:

Random Access Memory (RAM).

Cache.

Registers.

RAM is plentiful and cheap, though relatively slow.

Registers are few, very expensive, but very, very fast.

And cache is in the middle: less plentiful compared to RAM,
more plentiful compared to register. Much faster than RAM,
much slower than registers.

The Atmega328p, for example, has SRAM (static RAM, one of
several types of RAM), a few registers, but no cache.

Larger CPUs have all three.

A good compiler will try to generate code that is optimized.
The optimized code makes efficient use of the available
resources, RAM, cache and registers, and fetch-decode-
execute cycles.

In applications where there is only one thing happening at a
time, like in our Arduino code that does not use interrupts,
variable data can be optimized for speed. The compiler will
generate code that stores variable data in high-speed

Extracted from https://techexplorations.com
Page 92

https://en.wikipedia.org/wiki/Random-access_memory
https://en.wikipedia.org/wiki/Cache_(computing)
https://en.wikipedia.org/wiki/Hardware_register
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcontrollers-ATmega328P_Datasheet.pdf
https://en.wikipedia.org/wiki/Static_random-access_memory
https://en.wikipedia.org/wiki/Instruction_cycle
https://en.wikipedia.org/wiki/Instruction_cycle

registers in addition to the original copy the RAM.

Because the variables are only updated by code in a single
thread of execution (such as, in the loop and other functions
in the same thread) there is no question as to the validity of
a value stored in the register. The value stored in the register
is always correct and up-to-date.

On the Arduino, the code can be executed outside the normal
path in the form of the interrupt service routine (also known
as “interrupt handler“).

You can write interrupt routines to execute based on timer
events, or external triggers (like a button being pressed).

If the normal path and the interrupt path access the same
variable, then it is possible that this variable can be accessed
from both places, at any time. This means that our program
can never trust that the value it is reading is correct. Perhaps
it has been changed by the interrupt routine?

Consider the following example, and imagine that there is an
interrupt service routine that operates on the variable at any
time (download from Github):

[t c b - s c r i p t
src=”https://gist.github.com/futureshocked/e717812bc91959
e7edd8c16bff0497b4.js”][/tcb-script]

What is the value of “b” in the serial monitor?

We can’t be sure. It can be either “2” or “7”.

In the loop, we set “a” to “1”. If the interrupt executes
before the calculation for “b” happens in the loop, then the

Extracted from https://techexplorations.com
Page 93

https://en.wikipedia.org/wiki/Interrupt_handler
https://gist.github.com/futureshocked/e717812bc91959e7edd8c16bff0497b4

value for “a” will be 5 instead of 1. But even if we know that
the interrupt has executed is not enough to know what the
result of this calculation will be.

We also need to consider that the value for “a” may be
stored at different places: RAM, cache (though note the
ATMega328p has no cache), or registers.

Which one has the latest correct value? Should we use the
copy from the RAM or the copy in the internal register?

I hope this shows that the problem here is uncertainty.

As the designers of a program, we want to remove such
uncertainties. We want to write programs that are
predictable and deterministic.

The C/C++ language offers the “volatile” modifier for this
specific purpose. We can use this modifier to mark a variable
as one that can change at any time across different memory
accesses, and accross parts of the program that operate at
different contexts.

By marking a variable as volatile, we instruct the compiler to
not optimize for reads and writes for the variable.

The compiler will ensure that the variable value is always
read from RAM.

Without the volatile modifier, the variable value will be
copied from the RAM to a local CPU register the first time it
is referenced. After that, it will be read from the CPU local
register. Only if this variable copy in the register has been
replaced by another variable will the CPU re-read it from the
RAM.

Extracted from https://techexplorations.com
Page 94

With all this in mind, let’s update the example code with
volatile (download from Github):

[t c b - s c r i p t
src=”https://gist.github.com/futureshocked/53f24f97c3852b
77d5cc030a2852810c.js”][/tcb-script]

The only difference between the first and second sketches is
that the “a” variable is now marked as “volatile”.

That’s it.

During execution, the value for this variable will always be
fetched from RAM, ensuring that it is current and not stale.

Extracted from https://techexplorations.com
Page 95

https://gist.github.com/futureshocked/53f24f97c3852b77d5cc030a2852810c
https://wp.techexplorations.com/wp-content/uploads/2020/01/DSC_0114-1000h-square.jpg

23. Optiboot, a free upgrade for
your Arduino

Arduino programming guide series

Optiboot, a free upgrade for your
Arduino
Your Arduino’s microcontroller contains special software,
the bootloader, which makes it very easy to upload new
sketches. It is possible to replace the default bootloader with
a more efficient variation and hence implement a software
upgrade to give your Arduino more space for your sketches
and faster uploads.

The Arduino owes much of its ease of use to its bootloader.
The bootloader is software that is resident in the Atmega
microcontroller and is responsible for making it easy to
upload a new sketch from the Arduino IDE to the flash

Extracted from https://techexplorations.com
Page 96

https://en.wikipedia.org/wiki/Booting#Modern_boot_loaders
https://www.arduino.cc/en/software

memory of the microcontroller.

The term “resident” means that the bootloader is not over-
written when you upload a new sketch. It remains ready to
facilitate the next sketch upload.

Without a bootloader, the process would be somewhat more
complicated. You would need to use specialized hardware
(such as an ISP programmer) to achieve the same thing. I
suspect that many people would give up at that point and
never go on to discover the real Arduino magic (getting
things done and learning, quickly).

The default bootloader that comes with the Atmega328P on
the Arduino is excellent. There are not too many good
reasons to change it. But then again, many people don’t
need a reason to try something new!

There are alternative bootloaders for the Atmega
microcontrollers out there, that promise to improve various
aspects of the default bootloader that ships with most
Arduinos.

One that delivers a lot of advantages over the default is the
Optiboot bootloader.

Advantage 1: size

Optiboot is smaller, by around 1.5KBytes with a total
footprint of just 500 bytes.

This means that more flash memory is available for your
sketch.

Extracted from https://techexplorations.com
Page 97

https://www.seeedstudio.com/Atmel-AVRISP-STK500-USB-ISP-Programmer-p-207.html
https://www.arduino.cc/en/Hacking/Bootloader
https://github.com/Optiboot/optiboot

Advantage 2: speed

Optiboot also runs at higher baud rates, which means that it
will be faster to upload a new sketch.

This is great for rapid prototyping. A faster sketch upload
speeds means that you will be able to iterate through new
versions of your sketches faster.

There is a good chance that if you have a newer Arduino Uno,
it already has Optiboot installed. If you don’t, you can install
it with the help of an AVR ISP programmer.

Although I have searched, I have not been able to find a
reliable way to detect the kind of bootloader installed on
your Arduino. Jeelabs has a sketch that can detect some older
bootloaders but has not been maintained for a while. So, if
you want to know what you have, consider uploading your
bootloader yourself.

Extracted from https://techexplorations.com
Page 98

https://amzn.to/1TyYRNk
https://jeelabs.org/2012/03/07/which-boot-loader-do-i-have/

24. A real time OS for the Arduino

Arduino programming guide series

A real-time OS for the Arduino
A real-time operating system is optimized so that processing
is completed within tight time bounds, and execution is
consistent and predictable. It is the preferred operating
system for critical applications. And a version of it works on
the Arduino Uno.

In a previous article in this series, I discussed a simple
approach for implementing multitasking on the Arduino.
This approach is based on the finite state machine paradigm.
It is good enough if your program has relatively few states,
for example controlling “simultaneously” two or three
devices.

However, as an application becomes more complicated, the
state machine approach becomes harder to handle and more
prone to defects.

When that happens, it is time to turn your attention to

Extracted from https://techexplorations.com
Page 99

https://wp.techexplorations.com/guides/arduino/programming/simple-multitasking-arduino/
https://en.wikipedia.org/wiki/Finite-state_machine

something more robust. One such solution is FreeRTOS, or
“Free Real-Time Operating System”.

FreeRTOS is not a solution specific to the Arduino.

It is software that runs on many microcontrollers and
microprocessors. It is a commercially developed product,
with an open-source license that allows people to integrate
it into their designs, free of charge, for open-source and
even commercial closed source projects.

It is recognized as a high-quality, well tested, documented
and supported real-time operating system.

Most people are used to general-purpose operating systems,
like Windows and Mac OS. These OSs manage the resources
of the host computer so that the various processes that are
running on top of it get their “fair” share. The OS is
responsible for allocating resources (like memory and CPU
time). The OS will make a best-effort attempt to allocate
resources to a process but will give no guaranty that it will.

A scheduler is a special service within the OS that makes
such decisions based on various scheduling algorithms. In
general-purpose operating systems, the scheduler tries to be
fair to all processes but can make no guarantees.

Extracted from https://techexplorations.com
Page 100

https://www.freertos.org/
https://www.freertos.org/
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Macintosh_operating_systems
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)#Scheduling_disciplines

A real-time OS, on the other hand, is designed so that each
process will get the resources it needs in a predictable way.

Critical applications, such as medical, avionics, and
industrial automation, depend on predictable patterns in the
way that the scheduler allocates resources to a process.
Therefore, a general-purpose OS is not suitable, and a real-
time OS takes over.

A real-time OS is not meant to work on the type of
processors that we find in a personal computer, but usually
on microcontrollers used in embedded applications.

Unlike in general-purpose computing, the applications in
which a microcontroller is used are very specific: they are
only designed to do a particular set of functions, reliably, and
predictably. The real-time OS ensures the scheduling, inter-
process communication, and synchronization of the
processes that make up the firmware running on these
microcontrollers.

You can use FreeRTOS on the Arduino, of course!

There is a FreeRTOS library that you must install first (just
search for “FreeRTOS” in the Library Manager), and a
respectable learning curve to get through. A good place to get
started is Maniacbug’s Github repository, which contains
examples of Arduino sketches that use FreeRTOS, and the
FreeRTOS Quick Start Guide page on freertos.org

Extracted from https://techexplorations.com
Page 101

https://en.wikipedia.org/wiki/Real-time_operating_system
https://en.wikipedia.org/wiki/Medical_device
https://en.wikipedia.org/wiki/Avionics
https://en.wikipedia.org/wiki/Automation
https://github.com/feilipu/Arduino_FreeRTOS_Library
https://en.wikipedia.org/wiki/Learning_curve
https://github.com/maniacbug/FreeRTOS
https://www.freertos.org/FreeRTOS-quick-start-guide.html
https://freertos.org/

	0-1-pwm-and-buffer-overflow
	1-2-what-is-the-amp8220baudamp8221-rate
	2-3-focus-on-the-type-parameter-in-amp8220printlnamp8221
	3-4-amp82210amp8243-or-amp8220a0amp8221-when-used-with-analogread
	4-5-what-is-the-amp8220-tamp8221-in-amp8220uint8-tamp8221
	5-6-how-can-you-use-the-f-function-to-save-on-ram
	6-7-what-is-the-gibberish-in-your-telnet-output
	7-8-the-arduino-amp8220mapamp8221-function
	8-9-confusing-keywords-follow-the-source-code-trail
	9-10-the-interrupt-service-routine-and-volatile-variables
	10-11-the-problem-with-delay
	11-12-how-to-deal-with-the-millis-rollover
	12-13-can-you-use-delay-inside-interrupt-service-routine
	13-14-the-ternary-operator
	14-15-a-closer-look-at-line-feeds-and-carriage-returns
	15-16-understanding-references-and-pointers
	16-17-simple-multitasking-on-the-arduino
	17-18-boolean-arrays
	18-19-concurrency-with-the-scheduler-library-on-the-arduino-due-and-zero
	19-20-bitshift-and-bitwise-or-operators
	20-21-what-is-a-amp8220staticamp8221-variable-and-how-to-use-it
	21-22-understanding-the-volatile-modifier
	22-23-optiboot-a-free-upgrade-for-your-arduino
	23-24-a-real-time-os-for-the-arduino
	Blank Page

