

Peter Dalmaris, PhD

Arduino Peripherals and
Circuits

Get the most out of your
Arduino with articles from
the Tech Explorations Blog

Extracted from https://techexplorations.com
Page 1

https://techexplorations.com

Welcome to this special collection of articles,
meticulously curated from the Tech Explorations blog
and guides. As a token of appreciation for joining our
email list, we offer these documents for you to
download at no cost. Our aim is to provide you with
valuable insights and knowledge in a convenient
format. You can read these PDFs on your device, or
print.

Please note that these PDFs are derived from our blog
posts and articles with limited editing. We prioritize
updating content and ensuring all links are functional,
striving to enhance quality continually. However, the
editing level does not match the comprehensive
standards applied to our Tech Explorations books and
courses.

We regularly update these documents to include the
latest content from our website, ensuring you have
access to fresh and relevant information.

Extracted from https://techexplorations.com
Page 2

License statement for the PDF documents on this
page

Permitted Use: This document is available for both educational
and commercial purposes, subject to the terms and conditions
outlined in this license statement.

Author and Ownership: The author of this work is Peter
Dalmaris, and the owner of the Intellectual Property is Tech
Explorations (https://techexplorations.com). All rights are
reserved.

Credit Requirement: Any use of this document, whether in part
or in full, for educational or commercial purposes, must include
clear and visible credit to Peter Dalmaris as the author and Tech
Explorations as the owner of the Intellectual Property. The credit
must be displayed in any copies, distributions, or derivative
works and must include a link to https://techexplorations.com.

Restrictions: This license does not grant permission to sell the
document or any of its parts without explicit written consent
from Peter Dalmaris and Tech Explorations. The document
must not be modified, altered, or used in a way that suggests
endorsement by the author or Tech Explorations without their
explicit written consent.

Liability: The document is provided "as is," without warranty of
any kind, express or implied. In no event shall the author or
Tech Explorations be liable for any claim, damages, or other
liability arising from the use of the document.

By using this document, you agree to abide by the terms of this
license. Failure to comply with these terms may result in legal
action and termination of the license granted herein.

Extracted from https://techexplorations.com
Page 3

1. Infrared sensor (PIR) tips
Arduino peripherals guide series

PIR sensor calibration
Learn how to calibrate and improve the reliability of the
infrared motion sensor.

The PIR sensor is very sensitive and often generates false
triggers.

The example sketch in lecture 0500 of Arduino Step by Step
Getting Started is very simple; it merely reports what the
sensor is telling it, and does not try to compensate for its
limitations.There are two things you can do to create a more
reliable detection system (and this can deliver the functionality
you are asking for).

Extracted from https://techexplorations.com
Page 4

https://github.com/futureshocked/ArduinoSbS2017/blob/master/_0500_-_Infrared_Sensor_1/_0500_-_Infrared_Sensor_1.ino
https://techexplorations.com/so/asbsgs2/
https://wp.techexplorations.com/so/asbsgs2/

1. Calibrate the sensor (hardware)

Look at the annotated photograph (above) where I have
marked the purpise of each knob.

Notice the two orange knobs on one side of the sensor?

The one on the left controls the sensor range. Turn it clockwise
to calibrate the effective range. The maximum range is around
7 meters.

I usually calibrate the range to its minimum setting, but
turning the left knob all the way anticlockwise. I do this
because most of my experiments involve small distances.The
knob on the right controls sensitivity. Turn it clockwise to
decrease sensitivity. Decreased sensitivity means that the
device will trigger (i.e. report movement) only when said
movement is prolonged.

I keep the sensitivity setting high by turning the sensitivity
knob all the way anti-clockwise. This means that the sensor
will trigger even for very small movements in front of it.
Beware, that at this sensitivity setting you will have erroneous
triggers.There is also a jumper swtch that controls the trigger
mode. I normally use H-mode triggering (as in the photo). In H-

Extracted from https://techexplorations.com
Page 5

mode, the sensor will repeatedly trigger when it “thinks” that
there is movement.

2. Improve reliability in software
You can improve the reliability of the sensor by adding
additional logic to your Arduino sketch.

In this example (heavily borrowing from a sketch I found in the
Arduino playground), I define a cutoff time. Any LOW triggers
from the sensor within this cutoff time are ignored as false, and
the Arduino continues to think that there is movement. Have a
look at it (but get a copy from Github if you want to try it out):

/** PIR sensor tester*/ int ledPin = 13; // choose the pin for the
LEDint inputPin = 3; // choose the input pin (for PIR sensor)int
pirState = true; // we start, assuming no motion detectedint val
= 0; // variable for reading the pin statusint
minimummSecsLowForInactive = 5000; // If the sensor reports
low for// more than this time, then assume no activitylong
unsigned int timeLow;boolean takeLowTime; //the time we give
the sensor to calibrate (10-60 secs according to the
datasheet)int calibrationTime = 30; void setup() {
pinMode(ledPin, OUTPUT); // declare LED as output
pinMode(inputPin, INPUT); // declare sensor as input
Serial.begin(9600); //give the sensor some time to calibrate
Serial.print(“calibrating sensor “); for(int i = 0; i <
calibrationTime; i++){ Serial.print(“.”); delay(1000); }
Serial.println(” done”); Serial.println(“SENSOR ACTIVE”);
delay(50);} void loop(){ val = digitalRead(inputPin); // read
input value if (val == HIGH) { // check if the input is HIGH
digitalWrite(ledPin, HIGH); // turn LED ON if (pirState) { // we
have just turned on pirState = false; Serial.println(“Motion
detected!”); // We only want to print on the output change, not
state delay(50); } takeLowTime = true; } else {
digitalWrite(ledPin, LOW); // turn LED OFF if (takeLowTime)
{ timeLow = millis(); takeLowTime = false; } if(!pirState &&
millis() – timeLow > minimummSecsLowForInactive){ pirState

Extracted from https://techexplorations.com
Page 6

https://playground.arduino.cc/Code/PIRsense/
https://github.com/futureshocked/arduino_sbs/blob/master/Infrared%20PIR%20sensors/L10_Sensitivity_adjusted/L10_Sensitivity_adjusted.ino
https://github.com/futureshocked/arduino_sbs/blob/master/Infrared%20PIR%20sensors/L10_Sensitivity_adjusted/L10_Sensitivity_adjusted.ino

= true; Serial.println(“Motion ended!”); delay(50); } }}

Extracted from https://techexplorations.com
Page 7

https://wp.techexplorations.com/wp-content/uploads/2020/01/DSC_0114-1000h-square.jpg

2. The basic functions of the Timer1 library
Arduino peripherals guide series

The basic functions of
the TimerOne library
Learn the basic functions of the TimerOne library that makes it
easy to use the Atmega328’s 16-bit counter.

Timer1 s one of the libraries written to take advantage of the
16-bit counter that comes with the Atmega328 (datasheet, see
section 16, page 111).

Extracted from https://techexplorations.com
Page 8

https://github.com/PaulStoffregen/TimerOne?__s=xxxxxxx&utm_source=drip&utm_medium=email&utm_campaign=RF+-+Tech+Explorations+Tips&utm_content=Tech+Explorations+Tip+%2316%3A+What+are+the+basic+functions+of+the+Timer1+library%3F
https://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061A.pdf

Think of it as a clock. Every time the Atmega oscillator ticks,
the counter increases by one.

The Timer1 library makes it easy to start, stop and
reset/restart the counter, just like you can do with a regular
timer wrist-watch (remember those?).

Initialization
To initialize the timer1 object, you can use this syntax:

Timer1.initialize(1000);

This will set the period of the timer object to 1000
microseconds. In practical terms, this code will setup the
counter to generate a timer interrupt every 1000
microseconds.

To handle this interrupt, you must write an interrupt service
routine.

Using the timer
Imagine this scenario: let’s say that you want to stop this
timer, temporarily.

You can connect a button to a digital input. When the user
presses the button, your sketch will stop the timer like this:

Timer1.stop();

When the user wants to restart the times, he can press the
same button again, and your sketch start the timer like this:

Timer1.start();

This call will get the timer to continue where it left off. Just like
with a standard timer watch.

Extracted from https://techexplorations.com
Page 9

The user may want to reset the timer and start from the
beginning. You can add another button to your circuit, the
reset button. When the user presses this button, the sketch
will reset the counter like this:

Timer.restart();

As a result, the timer will start again from zero.

An example sketch
The Timer1 library comes with an example sketch which I copy
below.

Here is the original.

I have removed the comments to compact the code.

There are a few things to notice in this sketch:

The interrupt handler. Notice the code1.
“Timer1.attachInterrupt(blinkLED);”
This registers the function “blinkLED” as
the one that will handle the interrupts from
Timer1.
The variable “blinkCount” is declared as2.
“volatile” as it is used inside the interrupt
hander (“blinkLED“) and the rest of the
sketch. Volatile variables are loaded from
the RAM, always, instead of the CPU
register. Registers contains temporary
variable values which may loose consistency
when are accessed by interrupt request
handlers.

Extracted from https://techexplorations.com
Page 10

https://github.com/PaulStoffregen/TimerOne/blob/master/examples/Interrupt/Interrupt.pde
https://www.arduino.cc/en/pmwiki.php?n=Reference/Volatile

Any code in the regular part of the sketch3.
that must not be interrupted (i.e. “critical
code“) is enclosed between the
“noInterrupts();” and “interrupts();”
functions. This way, we ensure that variables
must be updated reliably, contain reliable
values.

#include <TimerOne.h>const int led = LED_BUILTIN; // the pin
with a LED

void setup(void){ pinMode(led, OUTPUT);
Timer1.initialize(150000); Timer1.attachInterrupt(blinkLED);
Serial.begin(9600);}

int ledState = LOW;volatile unsigned long blinkCount = 0;

void blinkLED(void){ if (ledState == LOW) { ledState = HIGH;
blinkCount = blinkCount + 1; } else { ledState = LOW; }
digitalWrite(led, ledState);}

void loop(void){ unsigned long blinkCopy; // holds a copy of
the blinkCount noInterrupts(); blinkCopy = blinkCount;
interrupts(); Serial.print(“blinkCount = “);
Serial.println(blinkCopy); delay(100);}

Now that you know the basics of the TimerOne library go
ahead and give it a try.

Extracted from https://techexplorations.com
Page 11

https://en.wikipedia.org/wiki/Critical_section
https://en.wikipedia.org/wiki/Critical_section
https://github.com/PaulStoffregen/TimerOne

3. How to find your device I2C address
Arduino peripherals guide series

How to find your device
I2C address
How do you find out the address of an I2C device that is poorly
documented?

The I2C bus is shared so that a single data line can deliver
communications between a single master (like an Arduino) and
several slave devices (like LCD screens and real-time clocks).

How to find the I2C address of a device
So, how do you know which address belongs to a device,
especially since in most cases, the manufacturer will not tell
you?

The easiest way is to use an I2C address scanner.

Extracted from https://techexplorations.com
Page 12

https://github.com/todbot/arduino-i2c-scanner

The scanner is a small sketch that you can upload on your
Arduino.

Connect the device you want to probe to the Arduino
(preferably without connecting other I2C devices at the same
time), and run the sketch.

The scanner will cycle through all possible I2C addresses, and
once it receives a response from the device, it will inform you
of the address that worked.

Then, repeat the process for other I2C devices.

How to deal with I2C address conflict
What if there is a conflict? What if you have two devices that
“listen” on the same address?

In that case, you must select an alternate address for one of
the devices.

Let’s take, for example, the common parallel to I2C LCD
adapter. In most cases, it has a default address of 0x27. You
can choose to change this address to something else.

Extracted from https://techexplorations.com
Page 13

https://i2cdevices.org/addresses

An I2C LCD display adaptor. The red circle shows the position
of the I2C address configuration pads.

On this board, there are three pairs of pads, titled A0, A1, and
A2.

You can change the address by creating shorts between these
pads with a soldering iron and some solder.

If there is no documentation to tell you which short
combination creates which address, then repeat the probing
process I described at the start of this email to determine the
new I2C of the device.

Many I2C devices offer a similar method of configuring an
alternate address. While solder pads are most common, you
can also find versions that use jumpers or switches.

Extracted from https://techexplorations.com
Page 14

4. Getting started with I2C on the Arduino
Arduino peripherals guide series

Getting started with I2C
on the Arduino
What is I2C? How many devices are supported on a bus? Is I2C
supported by the Arduino Uno? How does it work?

Many peripheral devices use the I2C bus to communicate with
the outside world. The Arduino and the various Atmega
microcontrollers, of course, support I2C.

What is I2C?
The I2C bus is a technology that allows multiple devices to
communicate over a single pair of wires. The pair contains a
wire for data, and a wire for the clock signal.

To regulate traffic, a I2C bus contains a single node (often
referred to as “master”), and multiple regular nodes (often
referred to as “slaves”). The master will control the bus by

Extracted from https://techexplorations.com
Page 15

sending commands and information to individual slaves.

It is also possible to have multi-master I2C environments. In
such environments, and the term reveals, multiple master
devices can be connected to multiple regular devices on a
single bus.

Because the bus is shared by many devices, only one of them
can communicate with the host at one time, and the system
depends on each device having a unique address.

How are I2C devices addressed?

An I2C bus is a byte with seven bits, which
allows for 128 addresses. Therefore,

theoretically, an I2C bus can support up to
128 connected devices.

However, several of these addresses are
reserved for “special purposes.”

From I2C-bus.org, I copy these special-
purpose addresses, in case you are

wondering (here is the original):
10-bit addresses, binary

noted, MSB is left Purpose

0000000 0 General Call
0000000 1 Start Byte
0000001 X CBUS Addresses

0000010 X Reserved for Different Bus
Formats

0000011 X Reserved for future purposes
00001XX X High-Speed Master Code
11110XX X 10-bit Slave Addressing
11111XX X Reserved for future purposes

Extracted from https://techexplorations.com
Page 16

http://www.i2c-bus.org/addressing/?__s=xxxxxxx&utm_source=drip&utm_medium=email&utm_campaign=RF+-+Tech+Explorations+Tips&utm_content=Tech+Explorations+Tip+%2325%3A+I2C+addresses+and+devices
http://www.i2c-bus.org/addressing/?__s=xxxxxxx&utm_source=drip&utm_medium=email&utm_campaign=RF+-+Tech+Explorations+Tips&utm_content=Tech+Explorations+Tip+%2325%3A+I2C+addresses+and+devices

Once we subtract the reserved addresses, we are left with 112
addresses available to use on a single I2C bus, using 7-bits for
each address.

You probably think that 112 devices are more than enough for
any conceivable project. That’s true, but consider that I2C is
designed for use in industrial, telecommunications and medical
applications, to name a few.

Practically, it is everywhere, including in your car. So 112
addresses are not enough! That’s why I2C supports 10-bit
addressing that increases the address space by 10 times to
1023, in case you need it.

You can find more details here.

How to use I2C in the Arduino Uno?
In the Arduino Uno, which is powered by an Atmega328P
microcontroller unit, you can use a compatible version of the
original I2C, known as TWI.

TWI is short for “Two Wire Interface”.

You can find details in the Atmega328P documentation (see
page 215).

TWI on the Atmega328P supports the 7-bit I2C addressing
scheme, multi-master, and can operate as both a master or a
slave device.

The Arduino IDE provides the Wire library which makes it easy
to use TWI in your sketches. You can find example sketches
under Examples –> Wire.

Extracted from https://techexplorations.com
Page 17

http://www.i2c-bus.org/addressing/10-bit-addressing/?__s=xxxxxxx&utm_source=drip&utm_medium=email&utm_campaign=RF+-+Tech+Explorations+Tips&utm_content=Tech+Explorations+Tip+%2325%3A+I2C+addresses+and+devices
http://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061B.pdf
https://www.arduino.cc/en/reference/wire

Let’s have a looks at two of the provided examples so that you
can learn how your Arduino can read and write data using the
I2C bus.

Example: Arduino reads I2C data as
master
In the first one, the Arduino operates as a master device, and
requests data from a slave device. The slave could be another
Arduino, or a sensor.

This example is titled “master_reader”, and ships with the
Arduino IDE under “Wire”.

#include <Wire.h>void setup() { Wire.begin();
Serial.begin(9600); }void loop() { Wire.requestFrom(8, 6);
while (Wire.available()) { char c = Wire.read(); Serial.print(c);
} delay(500);}

In the sketch, we include the Wire library at the top with the
“include” statement.

Inside setup(), we initiate the Arduino on the I2C bus using
“Wire.begin()“. We only need to do this once. In this example,
the “begin()” function does not contain an address parameter.
This means that the Arduino will join the I2C bus as a master
device.

Extracted from https://techexplorations.com
Page 18

https://www.arduino.cc/en/Reference/WireBegin

If you wanted to make the Arduino a slave, you would provide
an address, like this:

Wire.begin(8);

With this, the Arduino will join the bus as a slave, listening to
address “8”.

In the loop(), we use “Wire.requestFrom(8, 6);” to ask a slave
device to return data. The first parameter (“8”) is the slave
device address, and the second (“6”) is the quantity of data (in
bytes) that we want from the slave.

When the slave starts sending the requested data, the Arduino
will store them temporarily in a buffer. We can use
“Wire.available()” to check to data. If data is available, we can
use “Wire.read()” to get one byte at a time from the buffer and
store it in a variable for later use.

We can repeat this process in a loop until the buffer is empty.

To know what to do with each byte, you will need to have
some information about the way that the slave device formats
data. The slave, for example, may be storing a 2-byte integer
in the first two bytes of its response, and a single character
(byte) in the 3rd byte of its response. Every device is different
in this regard, and I2C is only responsible for the reliable
communications between the devices, not for the content of
the communications.

Example: Arduino writes I2C data as
master
In the second example, the Arduino operates again as a
master device, but this time it sends data to another device.
The second device could be another Arduino, or a sensor.

This example is titled “master_writer”, and ships with the
Arduino IDE under “Wire”.

Extracted from https://techexplorations.com
Page 19

https://www.arduino.cc/en/Reference/WireRequestFrom
https://www.arduino.cc/en/Reference/WireAvailable
https://www.arduino.cc/en/Reference/WireRead

Here’s the sketch:

#include <Wire.h>void setup() { Wire.begin();}byte x =
0;void loop() { Wire.beginTransmission(8); Wire.write(“x is “);
Wire.write(x); Wire.endTransmission(); x++; delay(500);}

Much of this sketch is familiar. We include the Wire library in
the header, and call “Wire.begin()” to join the I2C bus.

Inside the loop(), we use “beginTransmission(8);” to begin the
transmission of an arbitrary number of bytes to a listening
device with address “8”.

We then use “Wire.write(“x is “);” and “Wire.write(x);” to send
a string and a single byte respectively.You can use either one
repeatedly.

The “write()” function is overloaded with three types so that
you can either send a single byte, or a string, or a
predetermined number of bytes when used with a second
parameter in the form of “Wire.write(data, length)”.

If you use the version of “write” with the two parameters, then
the first parameter must be an array of bytes, and the second
is the number of bytes to transmit.

To signal to the bus listeners that the Arduino has finished
sending data, use “Wire.endTransmission();”. This way,
another device will be able to use the bus.

Extracted from https://techexplorations.com
Page 20

https://www.arduino.cc/en/Reference/WireBeginTransmission
https://www.arduino.cc/en/Reference/WireWrite
https://www.arduino.cc/en/Reference/WireEndTransmission

5. Using I2C: True digital to analog
conversion on the Arduino Uno
Arduino peripherals guide series

Using I2C: True digital to
analog conversion on the
Arduino Uno
The Arduino Uno, with its Atmega328P MCU, does not have
true digital to analog conversion capability. For this, we turn to
an external device, the PCF8591.

The Arduino Uno, based on the Atmega328p, has no true
digital to analog capability. It can only simulate analog signals
using pulse width modulation.

Although PWM is sufficient for a lot of applications, there are
many more where true digital to analog conversion (DAC) is
more appropriate.

For example, making sound in the form of audio effects and
simple music, is a typical application of DAC. You can store
audio in a “wav” file stored on an SD card (which the Arduino
can use), then playback the audio to a speaker. Using PWM is

Extracted from https://techexplorations.com
Page 21

https://www.arduino.cc/en/Tutorial/Foundations/PWM
https://en.wikipedia.org/wiki/Digital-to-analog_converter
https://en.wikipedia.org/wiki/WAV
https://en.wikipedia.org/wiki/SD_card
https://www.arduino.cc/en/Reference/SD
https://www.arduino.cc/en/Reference/SD

not a good choice for something like this; you need true analog
output to reproduce the information in the audio file properly.

To create true analog signals with an Arduino Uno, you can use
a DAC module. There are many options in the market.

The NXP PCF8591
A popular DAC module that you can use with your Arduino is
the PCF8591 from NXP.

This module contains one 8-bit digital to analog converter and
four analog to digital converters, also 8-bit each.

You can connect this device to your Arduino via the I2C bus,
using one of 8 possible and configurable addresses. It operates
at 5V and 3.3V, so this module is also an excellent choice for
3.3V hosts, like the Arduino Zero and the Raspberry Pi.

Programming the module is easy. Of course, there is a library,
but you can also use the raw I2C/TWI interface.

Wiring
Here is the PCF8591 package pin-out, from the datasheet:

Extracted from https://techexplorations.com
Page 22

http://www.nxp.com/documents/data_sheet/PCF8591.pdf?__s=xxxxxxx&utm_source=drip&utm_medium=email&utm_campaign=RF+-+Tech+Explorations+Tips&utm_content=Arduino+Tips+and+Tricks+%2326%3A+True+digital+to+analog+conversion+on+the+Arduino+Uno
https://github.com/xreef/PCF8591_library

Connect the module to your Arduino by doing these
connections:

Device pin 16 (VDD) and 14 (VREF) to
Arduino 5V.
Device pin 13 (AGND) and 12 (EXT) to
Arduino GND.
Device pin 10 (SCL) to Arduino pin A5 (SCL).
Device pin 9 (SDA) to Arduino pin A4 (SDA).
Use two 10k resistors to pull up the SCL and
SDA pins (connect them to 5V).
Device pin 8 (Vss), pin 5 (A0), pin 6 (A1) and
pin 7 (A2) to GND. This sets the device I2C
address to 0x90.

Extracted from https://techexplorations.com
Page 23

Connect a 10F capacitor between 5V and
GND.

The analog output pin is device pin 15. This is where you can
connect an oscilloscope (so you can see the waveform of the
analog output), or an amplified speaker (so you can hear it).

Addressing
What is the address of the device? Because we have grounded
the three addressing pins 5, 6, and 7, the address is 144, in
decimal, or 90 in hexadecimal. To understand how this works,
look at the device datasheet, on page 13. There, you will see
this table:

Because bits 3, 2 and 1 of the slave address are 0, the full 8-
bit address byte is “10010000”. Convert this binary number to
decimal, and you’ll get 144. In hexadecimal, “0x90”.

Sketch
Now, to the sketch. It is as simple as it gets. Our objective is to
generate a sawtooth waveform by using a for() loop that sends
a single point 8-bit value to the DAC each time:

#include “Wire.h”void setup(){ Wire.begin();}void loop(){ for
(int i=0; i<256; i++) { Wire.beginTransmission(0x90 >> 1);
Wire.write(0x40); Wire.write(i); Wire.endTransmission(); }}

In the example below, inside the for() loop, we transmit three

Extracted from https://techexplorations.com
Page 24

https://www.nxp.com/docs/en/data-sheet/PCF8591.pdf

bytes each time:

Wire.beginTransmission(0x90 >> 1): We1.
start with the device address to enable the
slave device and make it listen to the
remainder of the communication. Because
our Arduino works with 7-bit I2C addresses,
but the PCF8591 expects 8 bits, we are
doing a right-shift of the slave address by
one bit.
Wire.write(0x40): We send the control2.
byte which tells the device that we want to
enable the analog output. Hexadecimal
“0x40” is binary “01000000” (see below for
more details about this control byte).
Wire.write(i): We send the byte that3.
contains the actual value that we want to
convert into an analog voltage on device pin
15.

At the end of the for() loop, we use “Wire.endTransmission();”
to finish the current communications session and release the
bus.

I2C bus protocol
Let’s have a quick look at the structure of the communication
between the Arduino and the PCF8591. As I have mentioned in
another article, the I2C bus takes care of facilitating the
delivery of messages across the bus. What the devices do with
the data is up to them. This means that in order to successful
exchange data through I2C, you must know the protocol use
by the specific devices you are working on.

Extracted from https://techexplorations.com
Page 25

https://mpl-publisher.com/guides/arduino/peripherals/i2c-arduino/

To learn about the I2C protocol of the PCF8591 device, you
must refer to its datasheet. In page 13 you will find Figure 15
which depicts the protocol used in write mode. In this
example, we are using the write more to “write” an analog
value to the analog out pin. It looks like this:

Notice that the protocol expects an address first, followed by a
control byte, followed by one or more data bytes. This is
exactly the protocol that we have implemented inside the for()
loop in our example sketch.

Next, let’s focus on the control byte.

Again, the datasheet is your guide. Go to page 6, where you
will find Figure 4:

Extracted from https://techexplorations.com
Page 26

Remember that we want to write a value to the analog out pin.
The second bit from the left controls this function. This bit is
the “analog output enable flag”. To turn on the analog output
pin, we must write a “1” to this bit. The rest of the bits don’t
matter, so we’ll write zeros everywhere else.

Therefore, the binary version of the control byte is
“01000000”. To save a bit of space in our sketch, we can use
the equivalent hexadecimal, which is “0x40”.

Either way is correct:

Wire.write(0x40); // hexadecimal
Wire.write(B01000000); // binary

Extracted from https://techexplorations.com
Page 27

Wire.write(64); // decimal

As you can see, using I2C is very simple as long as you
understand the protocol used by the devices involved. The
datasheet is your guide, and with relatively small effort you
can significantly expand the capabilities of your Arduino.

The NXP PCF8591 can provide you with true digital to analog
conversion capabilities for just couple of dollars, which is a
fraction ofthe cost of an Arduino that has this capability built-
in.

Extracted from https://techexplorations.com
Page 28

https://wp.techexplorations.com/wp-content/uploads/2020/01/DSC_0114-1000h-square.jpg

6. How accurate are thermometer
modules?
Arduino peripherals guide series

How accurate are
thermometer sensors?
Is the temperature reading from your sensors close to being
real? What is real temperature? What are some of the main
considerations?

If you need to measure temperature with your gadget, you will
need a temperature sensor. Typical sensors include the
popular DHT11/22, the BME280, and the TMP36.

The manufacturer publishes accuracy information on the
datasheet, and they often look impressive. But when you use
these sensors in “real life”, their measurements often seem
substantially different to the actual temperature. The actual
temperature can be given by another thermometer that you

Extracted from https://techexplorations.com
Page 29

https://www.mouser.com/datasheet/2/758/DHT11-Technical-Data-Sheet-Translated-Version-1143054.pdf
https://www.bosch-sensortec.com/products/environmental-sensors/humidity-sensors-bme280/
https://www.analog.com/media/en/technical-documentation/data-sheets/TMP35_36_37.pdf

trust, or by a calibrated reference thermometer.

Which of the aforementioned sensors is “better”?

Here are a few things to remember when you use them.

Comparing temperature sensors
It may sound weird, but comparing these devices is like
comparing oranges and apples (and lemons). They are all fruit,
but they are different.

In the case of these thermometer modules, they are all able to
measure *a* temperature. This temperature will only be
moderately accurate within a short-range compared to a
reference (i.e., “true”) temperature.

The two common digital modules (DHT22 and BME280) are
calibrated in the factory but are made with different
tolerances, accuracy, and materials.

DHT22
Have a look at the DHT22 datasheet.

It’s operating temperature is -40 to 80 Celsius, but you can
assume that its stated accuracy of 0.5C is only achieved
around the middle of this range. Still, this accuracy is
measured in a lab with controlled conditions. Parameters such
as air currents, humidity, exposure to sunlight, the age of the
device itself are within specific ranges. The stated accuracy for
this sensor will be different when you use it in any other
conditions.

BME280
The BME280 is a more professional sensor (and expensive) in

Extracted from https://techexplorations.com
Page 30

https://en.wikipedia.org/wiki/Temperature#Measurement
https://www.sparkfun.com/datasheets/Sensors/Temperature/DHT22.pdf
https://www.bosch-sensortec.com/products/environmental-sensors/humidity-sensors-bme280/

the sense that although it is factory calibrated, it provides a
way for the user to custom-calibrate it for the given application
and conditions; this provides a way to adjust the sensor. If you
plan to use it in warm, humid climates, for example, you can
take temperature and humidity with a reference instrument, or
use a calibration chamber to calibrate the offset of the BMP180
so that it matches the reference. Here is an excellent article on
the calibration topic.

Once the BME280 is calibrated, you can expect a typical
temperature accuracy of ±1.0°C. The datasheet (look at page
12) becomes as bad as ±1.25°C for temperatures towards the
edges of its useful range. It gets even worse (±1.5°C) towards
the edges of its operating range of -40°C to -60°C.

TMP36
The TMP36 is a linear analog sensor. It gives you a voltage that
is linearly proportional to the temperature it senses. Although
its stated accuracy is ±2°C (see first page of the datasheet),
on top of this and everything else discussed above, a lot
depends on the conversion formula you use.

To get the temperature from the TMP36, you have to convert
the charts in Figure 5, page 5, of the datasheet into a formula
(I have copied the charts below).

Extracted from https://techexplorations.com
Page 31

http://www.ametekcalibration.com/products/temperature/reference-temperature-sensors
http://www.processonline.com.au/content/instrumentation/article/temperature-measurement-and-calibration-what-every-instrument-technician-should-know--231999922
https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bme280-ds002.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/TMP35_36_37.pdf

The temperature you get from the sensor depends on how well
your calculation formula matches the line, and how accurate
your microcontroller can measure the voltage from the sensor.
As you can see from the chart, the line is mostly straight and
flat for temperatures that we are likely to encounter in a
regular application (between 5°C and 90°C). Other issues to
consider (and perhaps include in your calculation) are the heat
produced by other parts of your circuit, and even accurate the
calculation is performed on the microcontroller..

From all this, you can see that there are significant differences
between these sensors, which result in the differences that we
see when we take measurements with one next to the other.

Without a good reference or at least trusted thermometer, you
can’t be sure how close either of the mentioned sensors are to
the true temperature.

If the true temperature is what you want, you can’t depend on
subjective observation, like “it feels like 25C, but the sensor

Extracted from https://techexplorations.com
Page 32

says 21C” because you just can’t trust yourself for things like
this. You’ll have to get into the details of how the sensor
works, and how to calibrate it or compensate its readings.

New to the Arduino?
Arduino Step by Step Getting Started is our most popular
course for beginners.

This course is packed with high-quality video, mini-projects,
and everything you need to learn Arduino from the ground up.
We’ll help you get started and at every step with top-notch
instruction and our super-helpful course discussion space.

Learn more

Extracted from https://techexplorations.com
Page 33

https://wp.techexplorations.com/wp-content/uploads/2020/01/DSC_0114-1000h-square.jpg
https://techexplorations.com/so/asbsgs2/

7. MCP9808: an accurate thermometer
module for your Arduino
Arduino peripherals guide series

MCP9808: an accurate
thermometer module for
your Arduino
The MCP9808 is a very accurate temperature sensor for your
Arduino. It offers user-selected resolutions, programmable
alerts, I2C connectivity, and works with 5V and 3.3V Arduinos.

In a previous article, I discussed three common thermometer
sensors used by Arduino makers. A student recently asked if

Extracted from https://techexplorations.com
Page 34

https://techexplorations.com/guides/arduino/peripherals/temperature-sensor-considerations/

any thermometer sensors are more accurate than the common
DHT11/22, TMP36, and BMP280.

The Microchip MCP9808 high-accuracy
temperature sensor
Of course, there is! Presenting the MCP9808 from Microchip.

You can see that this module is made for accuracy by looking
at the first page of its datasheet; this is what you see:

There’s more information than usual about the accuracy of the
device, with typical and maximum values at different ranges. It
is also possible to select the measurement resolution!

Extracted from https://techexplorations.com
Page 35

https://www.mouser.com/datasheet/2/758/DHT11-Technical-Data-Sheet-Translated-Version-1143054.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/TMP35_36_37.pdf
https://www.bosch-sensortec.com/products/environmental-sensors/humidity-sensors-bme280/
http://ww1.microchip.com/downloads/en/DeviceDoc/25095A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/25095A.pdf

Evaluation of the MCP9808 accuracy plots
The first page also contains a very interesting temperature
accuracy distribution plot:

This plot tells us that 20% of readings from a sample of 854
units of this module contain approximately a 0.0C error!

The data shows that this is a very accurate sensor!

The datasheet contains several more interesting plots, like
these in page 7:

Extracted from https://techexplorations.com
Page 36

These plots illustrate how accuracy changes over the range of
temperatures that the sensor is capable of measuring. Notice
that in figure 2-3, which shows the error distribution at 25C,
the distribution is tall and concentrated thinly around the 0
mark on the horizontal axis; this indicates that the
manufacturer calibrated this sensor to work best in regular
room temperatures, where most of our electronics work.

Then, look at Figures 2-5 and 2-4, how the error distributions
at 85C and -20C are shorter and more spread out, indicating a
larger spread of the measurement errors.

This is a visual description of the fact that the accuracy of a
sensor varies along the whole width of the range in which it

Extracted from https://techexplorations.com
Page 37

operates.

Learn more
This uses the I2C interface to communicate with a
microcontroller. Adafruit has published a library that makes
using it even easier.

If you want to learn how to use the MCP9808 with your
Arduino, consider my course Arduino Step by Step Getting
Started, where I cover the sensor in Lecture 14 of Section 10.

Extracted from https://techexplorations.com
Page 38

https://github.com/adafruit/Adafruit_MCP9808_Library
https://app.techexplorations.com/courses/asbs-getting-started
https://app.techexplorations.com/courses/asbs-getting-started
https://wp.techexplorations.com/wp-content/uploads/2020/01/DSC_0114-1000h-square.jpg

8. Getting useful motion data from the
MPU-6050 device
Arduino peripherals guide series

Getting useful motion
data from the MPU-6050
device
Modern gadgets are mobile and can be “aware” of their
motion with the use of motions sensors. There are integrated
devices that combine (fuse) multiple motion sensors to
produce accurate and reliable motion information for your
gadget.

If you have played with motion sensors, like the MPU-6050 6-
axis gyroscope and accelerometer device, you may have
noticed that the raw data that you can read from them contain
too much noise to be useful.

Extracted from https://techexplorations.com
Page 39

https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf

The values can fluctuate wildly, even when the device is sitting
motionless on the floor.

This happens because the raw data that are generated by the
device contains a significant amount of noise.

Clearly, using the raw data is not an option. There’s not much
you can do with them other than printing them to the serial
monitor. Applications such as an autopilot for a drone are out
of the question.

A simple solution: averaging
What you need to do is to process the raw data in order to
extract useful information.

Processing raw motion sensor data can be done in a variety of
ways.

At the bottom end of the complexity scale, you can use simple
techniques such as smoothing or averaging the raw
accelerometer values (also, see here). Such techniques can
help clear up the noise and generate more reliable and useful
motion information.

A better solution: fusion
The most reliable motion information come by combining
multiple types of motion sensors.

The MPU6050 contains an accelerometer and a gyroscope.

Extracted from https://techexplorations.com
Page 40

https://stackoverflow.com/questions/4611599/smoothing-data-from-a-sensor
https://opendatascience.com/a-short-summary-of-smoothing-algorithms/

There are various algorithms that take input from both the
accelerometer and the gyroscope on the sensor to calculate
reliable and useful motion information. Because these
algorithms take input from multiple sensor types, we often
refer to them as “fusion” algorithms.

You can then use the output of these algorithms to control a
drone or or to navigate aircraft (see inertial navigation
system).

This page contains an excellent tutorial on how to combine
data from the gyro and accelerometer to derive useful values.

Understanding motion sensor averaging will stretch your
trigonometry! (source)

You may also want to read about the Kalman filter; this is an
algorithm used widely for guidance, navigation, and control of
all sorts of vehicles, from planes to spacecraft.

Here is an implementation of the Kalman filter for the Arduino.

The problem is that these algorithms are hard to understand
for most of us since they contain a lot of mathematics and

Extracted from https://techexplorations.com
Page 41

https://en.wikipedia.org/wiki/Sensor_fusion
https://en.wikipedia.org/wiki/Inertial_navigation_system
https://en.wikipedia.org/wiki/Inertial_navigation_system
http://www.starlino.com/imu_guide.html
http://www.starlino.com/imu_guide.html
https://en.wikipedia.org/wiki/Kalman_filter?__s=xxxxxxx&utm_source=drip&utm_medium=email&utm_campaign=RF+-+Tech+Explorations+Tips&utm_content=Tech+Explorations+Tip+%2338%3A+Getting+useful+motion+data+from+the+MPU-6050+motion+sensor
https://www.arduino.cc/reference/en/libraries/kalman-filter-library/

tend to be complicated; they are also demanding in RAM
because of the amound of calculations that they entail so that
they are barely able to work on an Arduino Uno.

The MPU-6050 Digital Motion Processor
Luckily, there are motion sensing devices that solve this
problem by running fusion algorithms internally. This means
that your Arduino will be able to receive clean and reliable
“fused” motion information from the module, instead of noisy
motion data.

The MPU-6050 is such a device.

It contains an integrated Digital Motion Processor (DMP); this is
a module that does all sorts of motion-related calculations
inside the chip, very efficiently and quickly.

The MPU-6050 DMP is relatively sophisticated. It supports 3D
motion processing and gesture recognition algorithms. It even
reports temperature, and if you connect an external
magnetometer, the DMP can also give you heading
information. The external magnetometer can be connected to
the MPU-60505 via an auxiliary I2C interface, so again you
don’t have to tie up the Arduino for this additional sensor.

An MPU-6050 library for Arduino
Even though using the DMP is not as straightforward as just
getting the raw data (for some reason, this critical feature is
not well documented in the datasheet), brilliant people have
managed to create a library for the Arduino that makes use of
it. It comes full of sample sketches with which you can play.

If you are serious about creating gadgets that make use of
motion sensor data, you need to understand some of the
mathematics involved, even if you use a DMP that does the
grunt work for you. However, with the MPU-6050 and a good

Extracted from https://techexplorations.com
Page 42

http://www.invensense.com/products/motion-tracking/6-axis/mpu-6050/?__s=xxxxxxx&utm_source=drip&utm_medium=email&utm_campaign=RF+-+Tech+Explorations+Tips&utm_content=Tech+Explorations+Tip+%2338%3A+Getting+useful+motion+data+from+the+MPU-6050+motion+sensor
http://43zrtwysvxb2gf29r5o0athu.wpengine.netdna-cdn.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf
https://github.com/jrowberg/i2cdevlib/tree/master/Arduino/MPU6050

library, you will be able to create reliable motion-sensing
gadgets without needing a degree in higher applied
mathematics.

Learn more
If you want to learn how to use the MPU-6050 with your
Arduino, consider my course Arduino Step by Step Getting
Serious, where I cover the sensor in Section 3.

Extracted from https://techexplorations.com
Page 43

https://en.wikipedia.org/wiki/Applied_mathematics
https://en.wikipedia.org/wiki/Applied_mathematics
https://app.techexplorations.com/courses/arduino-step-by-step-getting-serious/
https://app.techexplorations.com/courses/arduino-step-by-step-getting-serious/
https://wp.techexplorations.com/wp-content/uploads/2020/01/DSC_0114-1000h-square.jpg

9. What to do with unused pins on an
Atmega328P or Attiny85?
Arduino peripherals guide series

What to do with unused
pins on an Atmega328P
or Attiny85?
Is it OK to leave unused pins “floating”? The answer is in the
datasheet of your favorite microcontroller. Let’s decipher it
here.

In most projects, you will end up with having several I/O pins
on your Arduino or Attiny85 (a cousin of the Atmega328p) left

Extracted from https://techexplorations.com
Page 44

unconnected.

What should you do with these pins?

Attiny85, datasheet recommendation
about unused pins
Download the datasheet for the Attiny85.

Go to page 57 and have a read of section 10.2.6 Unconnected
Pins.

I am quoting here (emphasis mine):

If some pins are unused, it is recommended to ensure that
these pins have a defined level. Even though most of the
digital inputs are disabled in the deep sleep modes as
described above, floating inputs should be avoided to reduce
current consumption in all other modes where the digital
inputs are enabled (Reset, Active mode and Idle mode). The
simplest method to ensure a defined level of an unused pin is
to enable the internal pull-up. In this case, the pull-up will be
disabled during reset. If low power consumption during reset is
important, it is recommended to use an external pull-up or
pull-down. Connecting unused pins directly to VCC or GND is
not recommended, since this may cause excessive currents if
the pin is accidentally configured as an output.

Atmel 8-bit AVR Microcontroller with 2/4/8K Bytes In-System
Programmable Flash, page 57

You will find the exact same sentence in page 62, section
13.2.6, of the ATmega328P datasheet.

Datasheet recommendation

Extracted from https://techexplorations.com
Page 45

http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-2586-AVR-8-bit-Microcontroller-ATtiny25-ATtiny45-ATtiny85_Datasheet.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcontrollers-ATmega328P_Datasheet.pdf

interpretation
So, what does this mean?

If you want to be entirely compliant with the Atmel
recommendation, you should connect any unused I/O pins to
Vcc or GND via a large (~10KOhm) external resistor. In other
words, you should not leave those pins “floating“.

GND is preferable to Vcc as it reduces the risk of a short-
circuits.

If you don’t want to add the additional external resistors in
your circuit, you can simplify your design by opting for the
MCU internal pull-up resistors. This, in effect, means that you
will tie any unused I/O pins to Vcc. To do this, you can use the
Arduino language “pinmode(pin, mode)” function.

Extrapolate for other integrated circuits
In general, you can follow the recommendation I have outlined
above for other microcontrollers and their I/O pins.

There’s one differentiator: for unused output-only pins it
doesn’t matter if you leave them floating.

An example of a an integrated circuit that contains output-only
pins is the 595 shift register that I demonstrate in my relevant
lectures in Arduino Step By Step Getting Serious. You can
leave such pins unconnected.

It’s the programmable I/Os you need to think about more
carefully. The guidelines from the datasheet should cover all
practical cases.

Extracted from https://techexplorations.com
Page 46

https://en.wikipedia.org/wiki/Floating_ground
https://wp.techexplorations.com/blog/electronics/blog-what-are-pull-up-and-pull-down-resistors/
https://www.arduino.cc/reference/en/language/functions/digital-io/pinmode/
https://app.techexplorations.com/courses/arduino-step-by-step-getting-serious/

1. Pull-up and pull-down resistors
Circuits guide series

Pull-Up & Pull-Down
Resistors
People that are new to the Arduino and circuit design
frequently ask is about pull-up and pull-down resistors. What is
the purpose of a pull-up or pull-down resistor, and how does
they work?

A question people new to circuit design frequently ask me is

Extracted from https://techexplorations.com
Page 47

about pull-up and pull-down resistors.What is the purpose of a
pull-up or pull-down resistor, and how does it work?Imagine
that you have a switch. One pin is connected to a 5V source,
and the other to a logic circuit. A logic circuit is a component
that expects voltage that lies within a specific range and
values. For example, the Arduino Uno expects voltages
between 0V and 5V to be applied on its pins. If the pin is
digital, then the Arduino Uno will perceive as HIGH any voltage
between 5V and 2V, and LOW any voltage between 0V and
0.8V.

Case 1: Vin is determinable
Schematically, you would model a logic circuit connected to a
voltage source like this:

The logic circuit has a single input pin on the left side of the
blue box, and a single output on the right side. This pin is
connected to a voltage source. The blue wire connects the pin
to Vin, a voltage source that is greater than zero (it can also be
negative). To depict a voltage source in a schematic, we often
use the symbol of a triangle (there are other symbols, but this
is a different topic). If the logic circuit is an Arduino, then Vin
could be 5V coming out of a sensor.In other words, the logic
circuit is sensing Vin at its input pin because the wire that
connects the pin to ground is uninterrupted. In the schematic,
we denote the voltage sensed by the logic circuit on the input
pin as “Vin”.

Extracted from https://techexplorations.com
Page 48

Case 2: Vin is in-determinable (floating)
Now, let’s add an open switch between ground and the logic
circuit’s input pin.What is the voltage that the logic circuit is
sensing on its input pin?

The answer is that we don’t know. The input pin of the logic
circuit is not connected to a voltage source with a specific
value.A term that we use to describe this situation is that the
pin is “floating”. In other words, a pin that is not connected to
a specific voltage is said to be floating.I’ll repeat: the problem
here is that the input pin of the logic circuit is not connected to
a source of defined value, and logic circuits don’t like this!How
do we fix this problem?

Solution: Pull-up or pull-down resistors
Have a look at the next schematic:

Extracted from https://techexplorations.com
Page 49

We fix this by using a large resistor (say, 10k or larger) to
connect the logic circuit’s input pin to ground. In electronics
schematics, ground is often depicted with a symbol that
consists of three parallel lines, like the one in the example
above.By convention, the voltage level at ground is 0V. So,
when the switch is open, the 0V level from GND is conveyed to
the logic circuit’s input pin. Because of the relatively large
resistor between GND and the input pin, the current that flows
through the wire is very small. We call this current “leakage
current”. What if we close the switch? Then, we’ll have this:

Extracted from https://techexplorations.com
Page 50

Because the resistor is large, current from Vin will find it much
easier to flow through the logic circuit rather than to ground
via the resistor. And, because the connection between Vin and
the logic circuit input has negligible resistance, Vin’s value will
be transferred to the input of the logic circuit.Let’s recap: by
attaching a pull-down resistor to our circuit, we ensure that the
logic circuit’s input will always have a defined value, and will
be happy. You could inverse the circuit and connect the
resistor to Vin instead of ground. Now, this resistor would be
called “pull-up,” because it would be pulling the input of the
logic circuit to Vin (HIGH) when the switch was open.A pull-up
resistor schematic would look like this:

I have just swapped the positive voltage (differential) to the
top of the diagram and the ground to the bottom. When the
switch is open, the input of the logic circuit is connected to Vin
via the large resistance, so the voltage there is almost Vin.
There will be a tiny current flowing so there will also be a
minimal drop in voltage from Vin to the input of the logic
circuit, but this is small enough to be able to accept an
approximate value at the logic circuit as Vin, which is HIGH.

Extracted from https://techexplorations.com
Page 51

1. PWM and buffer overflow
Arduino programming guide series

PWM and buffer overflow
What happens if you write a PWM value that is larger than the
maximum value that the Arduino’s analogWrite() function can
accommodate? This is an interesting case of “buffer overflow”.

The Arduino Uno is able to produce Pulse Width Modulation
signals via pins 3, 5, 6, 9, 10, and 11. With PWM, you can
approximate analog output programmatically and do things
like fade an LED on and off or control the speed of a motor.

PWM values and register bits
In the Atmega328 (the chip that powers the Arduino Uno), the
register that is used by the PWM function has a resolution of 8
bits. This gives you a total of 256 possible “analog” output
levels, from 0 to 255.

If you attach an LED to a PWM-capable pin, you can drive it to

Extracted from https://techexplorations.com
Page 52

https://en.wikipedia.org/wiki/Pulse-width_modulation
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcontrollers-ATmega328P_Datasheet.pdf
https://en.wikipedia.org/wiki/Processor_register

256 different brightness levels, from totally off (PWM value
“0”) to totally on (PWM value “255”).

And if you attach a motor, you can drive it to 256 different
speed levels.

Why 256? because the register contains 8 bits, and a binary
number with 8 bits can be one of 2 ^ 8 = 256.

You can set a PWM value by using the analogWrite(pin, value)
instruction.

So, analogWrite(3, 125) would set pin 3 to value 125.

How to overflow the PWM register
Now, here is where it gets interesting.

What happens if we set analogWrite to a value bigger than
255? Say, 256?

Let’s think about this for a minute.

If the PWM value is 255, the binary version is 11111111 (total
is 8 bits) is stored in the PWM register (feel free to use this
calculator for such binary to decimal conversions). A
connected LED would light up in maximum brightness.

Let’s add 1 to the register, and make the PWM value 256.

The binary version of 256 is 0000000100000000 (total is 16
bits) since now we need two bytes to represent this value.

But, the Arduino (in reality, its Atmega328P chip) can only fit
the first byte in its PWM register, the one in green.

Extracted from https://techexplorations.com
Page 53

https://en.wikipedia.org/wiki/Binary_number
https://en.wikipedia.org/wiki/Binary_number
https://www.arduino.cc/reference/en/language/functions/analog-io/analogwrite/
https://www.binaryhexconverter.com/binary-to-decimal-converter

The effect of PWM register overflow
The second byte will overflow and “disappear” (the red part).

So, what is actually stored in the PWM register is 00000000.
This is decimal “0”, which means that your LED is turned off.

In other words, analogWrite(3, 0) and analogWrite(3, 256)
would have the exact same effect on an LED or a motor.

Add another “1” to the register, and the PWM value now is
257.

The binary version of 257 is 0000000100000001. The byte in
green is stored in the PWM register, and the rest (in red)
disappears. In the register now the decimal value “1” is stored.

The lesson to take home is that although you can set the PWM
value in analogWrite to any decimal you like, only the first
byte of this number will fit in the PWM register.

The rest will overflow and disappear.

Extracted from https://techexplorations.com
Page 54

2. What is bypass/decoupling capacitor?
Circuits guide series

What is a
bypass/decoupling
capacitor?
In electronic circuits, capacitors can be used as a source of
energy and as a filter to help smooth out voltage spikes.

In the first instance, a capacitor can be used as a store of
energy that can substitute a battery or other power supply
when the circuit needs more current than what the main
source can provide.

I have taken the schematic diagram below from Microchip’s
(see Figure 2-2 on page 6) that discusses microcontroller
hardware design considerations. In microcontroller
applications, it is important to ensure that the input voltage is
kept as close as possible to the device’s operating voltage.

Extracted from https://techexplorations.com
Page 55

Supercapacitors
There is a particular type of capacitor, “supercapacitor” used
in place of batteries in devices that work in environments that
are too harsh for LiPo or other kinds of batteries.

A typical application of supercapacitors is in high-end dash-
cams. These devices operate often directly exposed to the
sun, and in extreme hot-cold climates. You will also find them
in photographic flashes, photovoltaic systems, and laptop
computers. You can find large supercapacitors in the power
grid. In all cases, these capacitors are used to provide a stable
power supply to the circuit.

You don’t have to use a super-capacitor to achieve outcomes I
described above. Depending on the circuit, a small electrolytic
capacitor can stabilize the voltage fed into a microcontroller,
like the Arduino.

Decoupling capacitors
I have borrowed the schematic below from the AN2519 AVR
microcontroller hardware design consideration documents
(page 6), from Microchip. I have marked the location of a
decoupling capacitor with the orange circle, placed across the
Vcc and GND pins.

Extracted from https://techexplorations.com
Page 56

https://en.wikipedia.org/wiki/Supercapacitor
https://en.wikipedia.org/wiki/Lithium_polymer_battery
https://en.wikipedia.org/wiki/Electric_battery
http://ww1.microchip.com/downloads/en/AppNotes/00002519A.pdf
https://wp.techexplorations.com/wp-content/uploads/2020/10/2020-10-12_12-21-59.png

Let’s examine a practical example. In the Arduino Uno, the
ATMega328P microcontroller has an operating voltage (Vcc) of
5V. If the Vcc voltage drops to 4.5V or below, even for a few
milliseconds, there is a significant risk of a “brown-out”. The
result of this is that the MCU will be in an unstable state, and
will not operate properly.

The decoupling capacitor will help to prevent a brown out by
keeping the voltage stable. It does that by allowing the
consumer circuit to draw energy from the capacitor, instead of
the main power source.

As you can see in the example circuit above, the appropriate
position for a decoupling capacitor in a microcontroller
application is as close as possible to the Vcc and GND pins. A
typical value for such a capacitor is 10F to 50F (usually
tantalum or electrolytic). The exact value is not critical as
having a capacitor around this range is much better than not
having one.

Capacitors not only store energy, but they also filter out noise.

Which brings me to decoupling capacitors for filtering out
noise.

Decoupling capacitors for noise filtering
In many DC applications, you can add a capacitor across the
Vcc and GND lines to smooth out noise from the power supply
or from other active components such as integrated circuits,
motors or AC/DC power supplies.

When your circuit contains noisy components, it is important
to add decoupling capacitors. These capacitors act not only as
an energy store, but also as a filter for the harmful electrical
noise.

You typically find very small-capacity capacitors here, around
0.1F. While they do store energy (as all capacitors do) their

Extracted from https://techexplorations.com
Page 57

http://ww1.microchip.com/downloads/en/AppNotes/00002519A.pdf

primary purpose in the circuit is to filter out this unwanted
electrical noise.

In digital circuits in particular, fast-switching components, such
as an Atmega328P, can switch pins on and off (or their internal
configuration) rapidly. Each pin on/off flip means that the
current drawn from the power supply changes rapidly. These
tiny changes in the current draw can cause small fluctuations
in the voltages that runs through the circuit. This is noise. This
noise is not predictable, and becomes worse as the number of
active components in the circuit increases.

Too much of this noise in the circuit will cause it to stop
working reliably.

The solution?

We can use a capacitor with appropriate characteristics for the
purpose of filtering out (or dampening) the unwanted electrical
noise.

The main characteristic of a capacitor that relates to its
operation as a filter is its capacity. Connect such capacitor
close to the microcontroller’s GND and Vcc pins, to help
smooth out those fluctuations.

For example, a 0.1F is good for dampening noise at
frequencies around 100MHz.

Each circuit generates different kinds of noise, both in terms of
frequencies and amplitude. While a generic value of bypass
capacitors like 0.1F is a good place to start, it is often
necessary to spend time with an oscilloscope to determine the
best capacitor for the specific circuit.

Extracted from https://techexplorations.com
Page 58

When to use a decoupling capacitor?
In practice, when would you use a decoupling capacitor?

If your circuit contains a microcontroller or something similarly
fast switching, then always include a small ceramic decoupling
capacitor of around 0.1F connected very close to that fast
switching component’s Vcc and GND pins. The capacitor will
take care of the noise.

If your circuit contains a component that occasionally draws a
big burst of current, like a motor or a transmitter, then add a
larger bypass capacitor (say, between 10F to 50F).

This Atmel guide recommends that you include decoupling
capacitors to all Vcc-GND pairs and also provides the
appropriate values and locations (on the PCB) for these
capacitors.

Extracted from https://techexplorations.com
Page 59

http://ww1.microchip.com/downloads/en/AppNotes/00002519A.pdf
https://wp.techexplorations.com/guides/arduino/common-circuits/pull-up-down-resistors/

3. What is the purpose of the diodes in a
keypad circuit?
Circuits guide series

What is the purpose of
the diodes in a keypad
circuit?
A diode is a semiconducting device that allows the flow of
electricity towards only one direction. Diodes are commonly
used in applications where we want to prevent back-currents.
One such application is in a keypad or keyboard circuit.

Extracted from https://techexplorations.com
Page 60

The 4×4 membrane keypad
When you wire a 4×4 (or similar) membrane keypad to your
Arduino using a single analog data wire, like in the schematic
below, most people readily understand the purpose of the
resistors.

Extracted from https://techexplorations.com
Page 61

https://amzn.to/3mAm1V9

Extracted from https://techexplorations.com
Page 62

The resistors are used to create a voltage ladder, a circuit that
produces multiple voltage reference points that can be
measured by the Arduino. The sketch that is running in the
Arduino can figure out which key was pressed by measuring
the voltage on the sampling pin.But what about the diodes?
What is their purpose?

Diodes in the 4×4 keypad circuit
If you can somehow ensure that only one key can be pressed
at any given time (perhaps through mechanical means), the
diodes are not needed. Try it out, and you should see that the
keyboard works fine. But if you happen to press multiple keys
on a matrix keypad (like when you hold down Shift-Cmd-S in a
computer keyboard), an effect called “ghosting” comes into
play.

When ghosting occurs, then usually a key that wasn’t pressed
is read by the host (the Arduino, in our case).In many
keyboard designs, diodes are added to deal with ghosting. If
you are curious to know more about this, I have found two
useful resources:

First Wikipedia’s entry on Rollover Key,
describing how a keyboard can deal with
multiple pressed keys.
Second, a blog post on the matrix-
configuration keyboard. You can scroll down
to the section on ghosting.

Extracted from https://techexplorations.com
Page 63

https://en.wikipedia.org/wiki/Voltage_ladder
https://github.com/futureshocked/TE-Arduino-SbS-Getting-Serious/blob/master/_0680_-_Membrane_keypad_1-wire/_0680_-_Membrane_keypad_1-wire.ino
https://en.wikipedia.org/wiki/Rollover_(key)#Ghosting
https://en.wikipedia.org/wiki/Rollover_%28key%29
http://blog.komar.be/how-to-make-a-keyboard-the-matrix/
http://blog.komar.be/how-to-make-a-keyboard-the-matrix/

4. Logic level shifting
Circuits guide series

Logic level shifting
Digital electronics operate at specific voltages. For example,
the Arduino Uno operates at 5V. The Arduino Due operates at
3.3V. How can we connect electronic components that operate
at different voltages?

Many Arduino boards, like the Arduino Uno, operate at 5V. This
means that they are designed to receive and transmit signals
at the 5V level.

Other Arduino boards, such as the Arduino Pro and the Arduino
Due, operate at the 3.3V logic level. These boards are better
suited to mobile applications because they are more efficient.

Many peripherals, like sensors, displays, and integrated
circuits, are operate at the 3.3V level. This means that even if
they implement a communications protocol that the Arduino

Extracted from https://techexplorations.com
Page 64

https://en.wikipedia.org/wiki/Communication_protocol

supports, you still have to consider how to connect them
electrically.

Connecting a 5V device to a 3.3V device
Connecting a 5V signal from an Arduino to a 3.3V input of a
sensor like the LSM303 magnetometer integrated circuit will
most likely damage the IC (unless it is tolerant of the higher
voltage). Similarly, a 3.3V signal from the sensor to the
Arduino Uno may or may not be read correctly. Any fluctuation
below the 3V level will bring the signal too low to be correctly
interpreted as HIGH by the Arduino.

For a 5V Arduino, the 3V is essential. As per the datasheet, any
voltage above 0.6*Vcc is interpreted as HIGH. If your Vcc is
precisely 5V, then any signal above 3V is HIGH. If your actual
Vcc is a bit lower, then the cutoff voltage is affected
accordingly.

Logic level shifting methods
There are a few ways to deal with interfacing 3.3V and 5V
devices.

A common method is the use of resistors configured as voltage
divider. If you follow this path, you must be careful to
accurately calculate the proper value of the resistors for the
target voltage.I think that the best way to go about this is to
use bi-directional level shifters. These are devices specifically
designed for this objective. They come assembled as
breakouts, like this one from Adafruit.

Extracted from https://techexplorations.com
Page 65

https://www.st.com/resource/en/datasheet/DM00027543.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061A.pdf
https://en.wikipedia.org/wiki/Voltage_divider
https://en.wikipedia.org/wiki/Voltage_divider
https://amzn.to/1nLIlwz

Or, you can go with a standalone integrated circuit, like the
74LVC245 from Texas Instruments (datasheet).

Both options have two rows of pins, one for connecting to the
3.3V device and the other for the 5V device. Both are also
designed to work with signals at the 1.8V and 2.8V levels. They
simplify the circuit layout and take care of the details. You can
use these level shifters to connect the Arduino to 3.3V

Extracted from https://techexplorations.com
Page 66

https://amzn.to/1JX9bM1
https://www.ti.com/product/SN74LVC245A/datasheet

computers like the Raspberry Pi and the Beaglebone Black. In
general, these devices are more likely to be damaged if you
connect their I/O pins to an incorrect voltage, so having a few
logic level shifters around can save you money and time.

The Tech Explorations Subscription
program
Subscribe and access all of our video courses immediately.

With a catalog of 25+ premium video courses (and growing),
this subscription gives you an amazing resource to boost your
learning.

__CONFIG_colors_palette__{“active_palette”:0,”config”:{“color
s”:{“62516”:{“name”:”Main
Accent”,”parent”:-1}},”gradients”:[]},”palettes”:[{“name”:”D
efault Palette”,”value”:{“colors”:{“62516”:{“val”:”var(–tcb-
skin-color-0)”}},”gradients”:[]}}]}__CONFIG_colors_palette__
Learn more

Jump to another article

1. Pull-up & pull-down resistors2. What is a bypass/decoupling
capacitor?3. What is the purpose of the diodes in a keypad
circuit?4. Logic level shifting5. Why should you use a diode in a
relay driver circuit?6. Why use a voltage divider with a
photoresistor?7. Optoisolator: a simple way to electrically
separate parts of a circuit8. Use MOSFETs to drive large(ish)
loads

Extracted from https://techexplorations.com
Page 67

https://www.raspberrypi.org/
https://beagleboard.org/black
https://mpl-publisher.com/so/subscription/
https://wp.techexplorations.com/guides/arduino/common-circuits/pull-up-down-resistors/
https://wp.techexplorations.com/guides/arduino/common-circuits/bypass-decoupling-capacitor/
https://wp.techexplorations.com/guides/arduino/common-circuits/bypass-decoupling-capacitor/
https://wp.techexplorations.com/guides/arduino/common-circuits/diodes-keypad/
https://wp.techexplorations.com/guides/arduino/common-circuits/diodes-keypad/
https://wp.techexplorations.com/guides/arduino/common-circuits/logic-level-shift/
https://wp.techexplorations.com/guides/arduino/common-circuits/diode-relay/
https://wp.techexplorations.com/guides/arduino/common-circuits/diode-relay/
https://wp.techexplorations.com/guides/arduino/common-circuits/voltage-divider-photoresistor/
https://wp.techexplorations.com/guides/arduino/common-circuits/voltage-divider-photoresistor/
https://wp.techexplorations.com/guides/arduino/common-circuits/optoisolator/
https://wp.techexplorations.com/guides/arduino/common-circuits/optoisolator/
https://wp.techexplorations.com/guides/arduino/common-circuits/mosfet/
https://wp.techexplorations.com/guides/arduino/common-circuits/mosfet/

New to the Arduino?
Arduino Step by Step Getting Started is our most popular
course for beginners.

This course is packed with high-quality video, mini-projects,
and everything you need to learn Arduino from the ground up.
We’ll help you get started and at every step with top-notch
instruction and our super-helpful course discussion space.

Extracted from https://techexplorations.com
Page 68

https://wp.techexplorations.com/wp-content/uploads/2020/01/DSC_0114-1000h-square.jpg

Learn more

Done with the basics? Looking for more
advanced topics?
Arduino Step by Step Getting Serious is our comprehensive
Arduino course for people ready to go to the next level.

Learn about Wifi, BLE and radio, motors (servo, DC and
stepper motors with various controllers), LCD, OLED and TFT
screens with buttons and touch interfaces, control large loads
like relays and lights, and much much MUCH more.

Learn more

Extracted from https://techexplorations.com
Page 69

https://mpl-publisher.com/so/asbsgs2/
https://mpl-publisher.com/so/asbsgsr1/

5. Why should you use a diode in a relay
driver circuit?
Circuits guide series

Why should you use a
diode in a relay driver
circuit?
A relay is commonly used to drive large electrical loads. With a
relay, your Arduino can control large motors, LED strips, lights,
etc. But without a simple diode, your circuit can be easily
damaged.

You can easily make a relay driver circuit with a transistor, a
current limiting resistor (to turn the transistor on and off), and
a diode in parallel with the relay coil.

The diode is often the cause of confusion: why do we need

Extracted from https://techexplorations.com
Page 70

https://en.wikipedia.org/wiki/Relay
https://en.wikipedia.org/wiki/Transistor
https://en.wikipedia.org/wiki/Resistor
https://en.wikipedia.org/wiki/Diode

one?

I will explain…

Inductors
The coil of a relay device is that it is an inductor. An inductor
will react to sudden changes in current by producing a large
voltage across its ends.To energize the relay, you must turn on
the transistor so that current will flow between its emitter and
collector. To de-energise the relay, you must turn the
transistor off, which will interrupt the current flow between the
emitter and collector.

This sudden change in the current that flows through the coil
of the relay, will cause the coil to react. The result of this
reaction is a large voltage across its leads.

Back-current suppression diode
experiment
The diode is there to suppress this voltage so that it cannot
damage any components around the relay, such as the
transistor and the external battery supply (but also the
controlling logic circuit, such as the Arduino).To understand
what is going on, I did a quick experiment on my oscilloscope.

I used two versions of a simple circuit with a coil, button,
power supply and current limiting resistor (pictured below).

In the first version, I use a diode as a suppressor for the
voltage spike in the coil.

In the second version, I did not use the diode.Here are the two
circuits:

Extracted from https://techexplorations.com
Page 71

https://en.wikipedia.org/wiki/Inductor

I used a channel (blue) on my scope for the trigger, and the
other (yellow) to capture the voltage around the coil. The
Yellow line is the coil voltage, and the Blue is the voltage on
the switch (the trigger). You can ignore the blue line in the
screenshots below.

Here is what the capture looks like without the diode:

Extracted from https://techexplorations.com
Page 72

The capture with the diode:

Look at the voltages, especially the Vpp one (Vpp: Voltage
Peak-to-Peak).

Which one is larger? The one with, or without the diode?

If you look at the ending part of the waveform for the yellow
line, for both circuits the voltage will eventually stabilize at the
same value. Therefore the longer term (after around 350ns)
effect of the diode is negligible (if any).

Extracted from https://techexplorations.com
Page 73

But just after the moment I press the button and energize the
relay coil, the first line (no diode) shows a much bigger (in this
case, roughly double) peak-to-peak voltage compared to the
second line (with diode).As you can see, the addition of the
diode in a circuit that contains any kind of coil (like in a relay
or DC motor) will significantly dumpen back currents by
limiting the effect of the voltage accross the ends of the coil.

Extracted from https://techexplorations.com
Page 74

https://wp.techexplorations.com/guides/arduino/common-circuits/pull-up-down-resistors/
peter
Cross-Out
The Tech Explorations Subscription
program
Subscribe and access all of our video courses immediately.
With a catalog of 25+ premium video courses (and growing),
this subscription gives you an amazing resource to boost your
learning.
__CONFIG_colors_palette__{“active_palette”:0,”config”:{“color
s”:{“62516”:{“name”:”Main
Accent”,”parent”:-1}},”gradients”:[]},”palettes”:[{“name”:”D
efault Palette”,”value”:{“colors”:{“62516”:{“val”:”var(–tcbskin-
color-0)”}},”gradients”:[]}}]}__CONFIG_colors_palette__
Learn more
Jump to another article
1. Pull-up & pull-down resistors2. What is a bypass/decoupling
capacitor?3. What is the purpose of the diodes in a keypad
circuit?4. Logic level shifting5. Why should you use a diode in a
relay driver circuit?6. Why use a voltage divider with a
photoresistor?7. Optoisolator: a simple way to electrically
separate parts of a circuit8. Use MOSFETs to drive large(ish)
loads

6. Why use a voltage divider with a
photoresistor?
Circuits guide series

Why use a voltage
divider with a
photoresistor?
A common question is “why not connect a photoresistor
directly to one of Arduino’s analog pins, instead of connecting
it via a voltage divider?”.

Voltage dividers tend to confuse people that are new
electronics.

Let’s take a photoresistor, as an example.

A common question is “why not connect a photoresistor
directly to one of Arduino’s analog pins, instead of connecting
it via a voltage divider?”

It is a fair question.

The voltage that the Arduino measures on its analog pin
depends on the impedance (resistance) of the photoresistor.

Extracted from https://techexplorations.com
Page 75

https://en.wikipedia.org/wiki/Voltage_divider
https://en.wikipedia.org/wiki/Photoresistor

Since the impedance of the photoresistor depends on the light
intensity, we should be able to use the direct connection
instead of the voltage divider.

But, it doesn’t work like that.

Experiment
If you have a multimeter handy, try a simple experiment.

Connect the pins of your photoresistor to the electrodes of the
multimeter. Set the multiumeter to measure resistance (ohm-
meter). This will allow you to measure the impedance
(resistance) of a photoresistor.

Take a few measurements, under different light conditions.
You will see that the impedance varies, but is always very
high. For most common photoresistors, the measured
resistance can go from 100K to 1M.

Because of this high impedance, if you connect the
photoresistor between, say, the Arduino 5V pin and A0, the
current that will flow through this component will be very
small. As a result, the voltage drop on the photoresistor will be
barely noticeable by the Arduino.

On pin A0, the Arduino will measure close to 5V no matter how
much light is hitting the photoresistor.

That’s not very useful!

Here is a measurement of the impedance of a photoresistor,
when directed towards a light source. It is around 10K, a value
that is more suitable to a pull-up or pull-down resistor. At 5V,
you will not get much current from this device (just ~0.0005A
in this case).

Extracted from https://techexplorations.com
Page 76

Simulation
I have used my circuit simulator to compare the two ways of
connecting a photoresistor to the Arduino. Without a voltage
divider (left), and with a voltage divider (right). The simulator
allows me to test the photoresistor at arbitrary lux levels.

At three different lux levels on the photoresistor(around 1klux
is the light intensity in a low-lit room), the measured voltage
on the left circuit didn’t budge from the 5V. On the right side,
with the voltage divider fixed resistor, we received three
different readings.

Extracted from https://techexplorations.com
Page 77

http://icircuitapp.com/
https://en.wikipedia.org/wiki/Lux

As you can see, with the help of a suitable voltage divider, the
photoresistor becomes a useful sensor for light intensity.On
the left side, you can also see that regardless of the current
that flows through the photoresistor, the voltmeter measures
the voltage across the DC power supply, which is constant at
5V. There is simply no other way to connect the photoresistor
so that it can operate on its own and still provide a meaningful
reading in proportion to the intensity of the light that hits it.
Notice that this is an ideal circuit, without any impedance in
the wires. In real life, there is impedance in the wires, and the
circuit is more like this:

The impedance in the wires is around 0.11O, for a 10cm
jumper wire. This could produce a voltage reading of 4.998V in
the voltmeter on the circuit on the left. And that reading would
not vary much as the photoresistor’s impedance changes since
that impedance is so large in comparison.

Extracted from https://techexplorations.com
Page 78

Conclusion
By using a fixed resistor that is much smaller than the
minimum impedance of the sensor, we are able to create a
voltage drop that it depends a lot more on the smaller
component, but still influenced by the larger components
(larger, in terms of impedance).

Another benefit is this: because photoresistors come from
different manufacturers with different characteristics, by using
a fixed resistor in a voltage divider configuration we can reduce
the effect of these variances. Therefore, our circuit becomes
less dependent on the photoresistor’s peculiarities.

Extracted from https://techexplorations.com
Page 79

https://wp.techexplorations.com/guides/arduino/common-circuits/pull-up-down-resistors/

7. Optoisolator: a simple way to electrically
separate parts of a circuit
Circuits guide series

Optoisolator: a simple
way to electrically
separate parts of a
circuit
An optoisolator is a device that allows two parts of a circuit to
communicate using photon instead of electrons. This way, you
can electrically isolate two parts of a circuit.

For those cases where you need complete isolation between
two circuits, while provisioning for basic on/off type
interaction, you can use an optoisolator (also known as
“optocoupler”).

Extracted from https://techexplorations.com
Page 80

https://en.wikipedia.org/wiki/Opto-isolator

Disadvantages of the relay
As an example, consider the relay. With a relay, you can
control a high voltage/current circuit using a low-power signal
generated from a low-power circuit.

A relay works well, but it is a noisy, electro-mechanical
component. Apart from the clicking sound that is the result of
the solenoid’s mechanical motion that connects two of the
relay’s conductive pads, you also have to consider the short
finite lifetime of the component.

All this means that any gadget that contains an electro-
mechanical relay is subject to the wear and tear of the
mechanical parts, the relatively low on/off switching speed,
and the electrical noise created by the coil every time the
current changes.

Relays are also bulky when compared to most other parts of
an electronic device.

Advantages of the optoisolator
The optoisolator deals with all of these problems.

Typically, an optoisolator comes in the form of a small
integrated circuit that looks like any other IC on your PCB.

Below is an example: the ILD205T from Vishay.

Extracted from https://techexplorations.com
Page 81

https://en.wikipedia.org/wiki/Relay
https://en.wikipedia.org/wiki/Electromechanics
https://www.vishay.com/docs/83647/ild205t.pdf

The ILD205T optocoupler from Vishay

Optoisolator integrated circuits often contain multiple
channels. This means that you can drive more than one high-
powered circuits from the same optoisolator. They provide
complete electrical isolation between the two circuits since the
operating principle is light, rather than electromagnetism
through a coil.

Anatomy of the optoisolator
Inside an optoisolator IC you will find an LED that generates
light at near-infrared, and a photosensor that is sensitive to
this light. In between those two components is a closed optical
channel that routes the light from the LED to the sensor. There
are also electronics that are used to electrically interface the
LED and sensor with their respective sides of the external
circuits.

In the diagram below (from Wikipedia), you can see the input
pins 1 and two which drive the integrated LED, and the output
pins 3 and 4 that are driven by a photodiode or similar photo-
sensitive component.

Extracted from https://techexplorations.com
Page 82

Image courtesy of Wikipedia

Concerning tolerances, optoisolators can be impressive. A
small, cheap (~$4), common optoisolator like the ILD205T
comes in an SMD SOIC-8 package, contains two channels,
require just 10mA (and can tolerate up to 100mA) to turn the
embedded LED on at 6V. At the output side, it can drive loads
up to 70V. The opto-isolator can deal with differential voltages
of up to 4000V.

Here is the datasheet for the ILD205T, a commonly used
optoisolator.

Optoisolator applications
What can you do with an optoisolator that you can’t do
efficiently (or at all) with a relay? Driving a DC motor without a
motor driver, PWD of high-powered LEDs are a couple of
examples. Another good use of this device is for protecting
your Arduino. Anything that involves motors, mains power, and
often radios, could benefit from optoisolators.

The Tech Explorations Subscription

Extracted from https://techexplorations.com
Page 83

https://en.wikipedia.org/wiki/Opto-isolator#Alternatives
http://www.mouser.com/ProductDetail/Vishay-Semiconductors/ILD205T/?qs=xCMk%252bIHWTZNbubnL%252bUrVsw%3D%3D

program
Subscribe and access all of our video courses immediately.

With a catalog of 25+ premium video courses (and growing),
this subscription gives you an amazing resource to boost your
learning.

__CONFIG_colors_palette__{“active_palette”:0,”config”:{“color
s”:{“62516”:{“name”:”Main
Accent”,”parent”:-1}},”gradients”:[]},”palettes”:[{“name”:”D
efault Palette”,”value”:{“colors”:{“62516”:{“val”:”var(–tcb-
skin-color-0)”}},”gradients”:[]}}]}__CONFIG_colors_palette__
Learn more

Jump to another article

1. Pull-up & pull-down resistors2. What is a bypass/decoupling
capacitor?3. What is the purpose of the diodes in a keypad
circuit?4. Logic level shifting5. Why should you use a diode in a
relay driver circuit?6. Why use a voltage divider with a
photoresistor?7. Optoisolator: a simple way to electrically
separate parts of a circuit8. Use MOSFETs to drive large(ish)
loads

Extracted from https://techexplorations.com
Page 84

https://mpl-publisher.com/so/subscription/
https://wp.techexplorations.com/guides/arduino/common-circuits/pull-up-down-resistors/
https://wp.techexplorations.com/guides/arduino/common-circuits/bypass-decoupling-capacitor/
https://wp.techexplorations.com/guides/arduino/common-circuits/bypass-decoupling-capacitor/
https://wp.techexplorations.com/guides/arduino/common-circuits/diodes-keypad/
https://wp.techexplorations.com/guides/arduino/common-circuits/diodes-keypad/
https://wp.techexplorations.com/guides/arduino/common-circuits/logic-level-shift/
https://wp.techexplorations.com/guides/arduino/common-circuits/diode-relay/
https://wp.techexplorations.com/guides/arduino/common-circuits/diode-relay/
https://wp.techexplorations.com/guides/arduino/common-circuits/voltage-divider-photoresistor/
https://wp.techexplorations.com/guides/arduino/common-circuits/voltage-divider-photoresistor/
https://wp.techexplorations.com/guides/arduino/common-circuits/optoisolator/
https://wp.techexplorations.com/guides/arduino/common-circuits/optoisolator/
https://wp.techexplorations.com/guides/arduino/common-circuits/mosfet/
https://wp.techexplorations.com/guides/arduino/common-circuits/mosfet/

New to the Arduino?
Arduino Step by Step Getting Started is our most popular
course for beginners.

This course is packed with high-quality video, mini-projects,
and everything you need to learn Arduino from the ground up.
We’ll help you get started and at every step with top-notch
instruction and our super-helpful course discussion space.

Extracted from https://techexplorations.com
Page 85

https://wp.techexplorations.com/wp-content/uploads/2020/01/DSC_0114-1000h-square.jpg

Learn more

Done with the basics? Looking for more
advanced topics?
Arduino Step by Step Getting Serious is our comprehensive
Arduino course for people ready to go to the next level.

Learn about Wifi, BLE and radio, motors (servo, DC and
stepper motors with various controllers), LCD, OLED and TFT
screens with buttons and touch interfaces, control large loads
like relays and lights, and much much MUCH more.

Learn more

Extracted from https://techexplorations.com
Page 86

https://mpl-publisher.com/so/asbsgs2/
https://mpl-publisher.com/so/asbsgsr1/

8. Use MOSFETs to drive large(ish) loads
Circuits guide series

Use MOSFETs to drive
large(ish) loads
MOSFET transistors are the building block of modern
electronics. Between 1960 and 2018, to drive high-power
electronics, 13 sextillion (1.3×1022) MOSFETs have been
manufactured. Apart from using them to do calculations in
CPUs, they are excellent for driving large electrical loads.

Many typical Arduino applications involve driving devices that

Extracted from https://techexplorations.com
Page 87

require more power than what the Arduino itself can provide
through its pins. DC motors, lights and solenoids are example
devices that need lots of power to operate. This power
translates to higher voltages, higher currents, or both at the
same time. As the Arduino cannot provide the required power,
we use specialized devices like relays and transistors. These
devices are used as interfaces between low-power controller
circuits, like the Arduino, to higher power controller circuits,
like electric motors, LED strip lights, sirens, strobe lights, etc.In
thisarticle I will discuss the MOSFET device.

What is a MOSFET
The acronym “MOSFET” stands for
Metal–Oxide–Semiconductor Field-Effect Transistor.

Yes: it is a type of transistor, but instead of only having three
terminals, like a typical field-effect transistor (Base, Collector,
Emitter) it has four: source (S), gate (G), drain (D), and body
(B).

In most cases though, the B and the S are connected together
(shorted) so we end up with MOSFET packages that expose
only three terminals: source (S), gate (G), and drain (D).

Practically, a MOSFET has an advantage over a “normal”
transistor or relay because it requires very little current to
operate it (turn it on or off). Less than 1mA at the gate will do
the job. This is much less to the current needed by the
common field-effect transistor 2N2222 (around 5mA).

Despite the tiny control current, a MOSFET can deliver very
high currents, at least 10A and up to 60A for a common device
like the IRLB8721PbF.Another advantage of a MOSFET over a
relay is its switching speed. It can turn on and off within
nanoseconds. The IRLB8721PbF, for example, can switch on
within around 100nsecs, which makes it a great option if you
want to drive a power LED or motor using pulse-width
modulation.And the really nice thing is that you can use a

Extracted from https://techexplorations.com
Page 88

https://en.wikipedia.org/wiki/Relay
https://en.wikipedia.org/wiki/Transistor
https://en.wikipedia.org/wiki/Electric_motor
https://en.wikipedia.org/wiki/LED_strip_light
https://en.wikipedia.org/wiki/Siren_(alarm)
https://en.wikipedia.org/wiki/Strobe_light
https://en.wikipedia.org/wiki/MOSFET
https://en.wikipedia.org/wiki/Field-effect_transistor
https://en.wikipedia.org/wiki/2N2222
http://www.mouser.com/ds/2/196/irlb8721pbf-938011.pdf
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Pulse-width_modulation

MOSFET almost as a drop-in replacement for a normal field-
effect transistor.

Example use of a MOSFET
Here is an example of use:

In this schematic, a MOSFET transistor is used to turn on the
connected motor. Because the motor contains a coil, a diode is
connected in parallel to protect from reverse voltages (see
relevant article). You should use the same setup for any load
that contains a coil, like a relay, solenoid or motor. If instead of
a motor you used a high-power LED, you can omit the diode.

Extracted from https://techexplorations.com
Page 89

https://techexplorations.com/guides/arduino/common-circuits/diode-relay/

The gate of the MOSFET is connected to one of the Arduino’s
GPIOs. This could be a 5V or a 3.3V Arduino. There is also a
pull-down resistor that connects the gate to ground. This
resistor is used in the case that the transistor’s source pin is
“floating”. This can happen, for example, if the Arduino is turn
off, or the source pin is not connected to anything and
therefore its voltage is undefined.In summary, a MOSFET
transistor is an excellent choice for controlling a relatively
large load using 3.3V or 5V logic, such as Arduinos, and
Raspberry Pis.

Extracted from https://techexplorations.com
Page 90

https://techexplorations.com/guides/arduino/common-circuits/pull-up-down-resistors/
https://wp.techexplorations.com/guides/arduino/common-circuits/pull-up-down-resistors/

	0-1-infrared-sensor-pir-tips
	1-2-the-basic-functions-of-the-timer1-library
	2-3-how-to-find-your-device-i2c-address
	3-4-getting-started-with-i2c-on-the-arduino
	4-5-using-i2c-true-digital-to-analog-conversion-on-the-arduino-uno
	5-6-how-accurate-are-thermometer-modules
	6-7-mcp9808-an-accurate-thermometer-module-for-your-arduino
	7-8-getting-useful-motion-data-from-the-mpu-6050-device
	8-9-what-to-do-with-unused-pins-on-an-atmega328p-or-attiny85
	9-1-pull-up-and-pull-down-resistors
	10-1-pwm-and-buffer-overflow
	11-2-what-is-bypassdecoupling-capacitor
	12-3-what-is-the-purpose-of-the-diodes-in-a-keypad-circuit
	13-4-logic-level-shifting
	14-5-why-should-you-use-a-diode-in-a-relay-driver-circuit
	15-6-why-use-a-voltage-divider-with-a-photoresistor
	16-7-optoisolator-a-simple-way-to-electrically-separate-parts-of-a-circuit
	17-8-us-e-mosfets-to-drive-largeish-loads
	Blank Page

