

Peter Dalmaris, PhD

Arduino Motors and
Displays

Get the most out of your
Arduino with articles from
the Tech Explorations Blog

Extracted from https://techexplorations.com
Page 1

https://techexplorations.com

Welcome to this special collection of articles,
meticulously curated from the Tech Explorations blog
and guides. As a token of appreciation for joining our
email list, we offer these documents for you to
download at no cost. Our aim is to provide you with
valuable insights and knowledge in a convenient
format. You can read these PDFs on your device, or
print.

Please note that these PDFs are derived from our blog
posts and articles with limited editing. We prioritize
updating content and ensuring all links are functional,
striving to enhance quality continually. However, the
editing level does not match the comprehensive
standards applied to our Tech Explorations books and
courses.

We regularly update these documents to include the
latest content from our website, ensuring you have
access to fresh and relevant information.

Extracted from https://techexplorations.com
Page 2

License statement for the PDF documents on this
page

Permitted Use: This document is available for both educational
and commercial purposes, subject to the terms and conditions
outlined in this license statement.

Author and Ownership: The author of this work is Peter
Dalmaris, and the owner of the Intellectual Property is Tech
Explorations (https://techexplorations.com). All rights are
reserved.

Credit Requirement: Any use of this document, whether in part
or in full, for educational or commercial purposes, must include
clear and visible credit to Peter Dalmaris as the author and Tech
Explorations as the owner of the Intellectual Property. The credit
must be displayed in any copies, distributions, or derivative
works and must include a link to https://techexplorations.com.

Restrictions: This license does not grant permission to sell the
document or any of its parts without explicit written consent
from Peter Dalmaris and Tech Explorations. The document
must not be modified, altered, or used in a way that suggests
endorsement by the author or Tech Explorations without their
explicit written consent.

Liability: The document is provided "as is," without warranty of
any kind, express or implied. In no event shall the author or
Tech Explorations be liable for any claim, damages, or other
liability arising from the use of the document.

By using this document, you agree to abide by the terms of this
license. Failure to comply with these terms may result in legal
action and termination of the license granted herein.

Extracted from https://techexplorations.com
Page 3

1. Unipolar vs bipolar stepper motors
Motors guide series

Unipolar vs bipolar
stepper motors
What is the difference between unipolar and bipolar stepper
motors? It’s in the coils.

Bipolar stepper motors are generally able to produce more
torque than unipolar stepper motors, and are more efficient.

However, they are more complicated to drive (=”operate”).
The main difference between the two types of stepper motors
has to do with the way that the wire winding is constructed.

Stepper motor wire winding
Here’s a simplified depiction of the wire winding for the two
types of stepper motors.

Extracted from https://techexplorations.com
Page 4

https://en.wikipedia.org/wiki/Stepper_motor
https://en.wikipedia.org/wiki/Torque
https://en.wikipedia.org/wiki/Coil_winding_technology

The unipolar motor has a central common tap per phase. The
bipolar motor does not.

In the schematic above, you can see a bipolar stepper motor
and a unipolar stepper motor with two phases each.

A wire winding arrangement is refered to as a “phase”

The unipolar stepper motors, has one winding per phase, with
a center tap. This allows the controlling circuit to operate the
motor with current that flows always in the same direction.
Therefore, there is no need to generate reverse current. Each
time the phase is activated, only half of its coil is energized.

The bipolar stepper motor also has a single winding per phase.
However, there is no center tap. This means that when the
phase is activated, the entire coil is energized. The result is
that the bipolar motor is able to produce much more torque
compared to the unipolar motor. But, there is a cost: the
controlling circuit must be able to generate current that can
move both ways through the coil, i.e. “regular” current and
“reverse” current. As a result, the controlling circuit for a
bipolar stepper motor is more complicated then that of a
unipolar stepper motor.

Bipolar motors have multiple (at least two) independent
windings. A wire comes out of each of the winding’s ends, so

Extracted from https://techexplorations.com
Page 5

https://en.wikipedia.org/wiki/Electric_current
https://en.wikipedia.org/wiki/Electromagnetic_coil

you get two wires per winding.

Unipolar motors may also have multiple (more than two)
windings. However, in addition to the ends of each winding are
connected to wires, the middle attaches to a third wire.

The absence of this third (common) wire means that bipolar
motors are slightly easier to make.

Stepper motor drivers
When it comes to driving stepper motors, the simpler bipolar
motor requires a more complex driver; this is because, to
precisely control its motion, we need to be able to drive
current in each winding in both directions.

On the other hand, in a unipolar motor, we can get away with
a current that flows only in a single direction; this means that
the driver electronics can be made simpler. The trade-off is
that we use only half of each winding coil at a given time, and
this translates to lower torque and efficiency.

However today, with easy access to motor drivers like H-
bridges, it is easy to drive bipolar motors with alternating
current. Unipolar motors advantage of not needing the reverse
current is not a big deal anymore so it is possible to get all of
their operational advantages with minimal cost.

Stepper motor drivers
To drive a stepper motor with your Arduino, you can consider
these drivers (I have included on a few common examples):

A4988, can control one bipolar motor with
up to 2A of current per coil.
DRV8825, can control one bipolar motor with
up to 2.2A of current per coil.

Extracted from https://techexplorations.com
Page 6

https://en.wikipedia.org/wiki/H-bridge
https://en.wikipedia.org/wiki/H-bridge
https://amzn.to/2UGKxri
https://amzn.to/2KcQVEK

L298N, a classic driver, can control one
bipolar motor with up to 2A of current per
coil.
TB6600, can control one large bipolar motor
with up to 4.5A of current per coil.
ULN2003, can control one small 5V unipolar
stepper motor.

Learn more
If you would like to learn how to use bipolar and unipolar
stepper motors (such as the NEMA17) with drivers such as the
L298N, Easydriver or the ULN2003, consider enrolling to
Arduino Step by Step Getting Serious.

We cover stepper motors in a dedicated section (Section 18)
that contains 18 lectures.

Extracted from https://techexplorations.com
Page 7

https://amzn.to/3lJwJZ9
https://amzn.to/36Lwdnb
https://amzn.to/38RFHQx
https://amzn.to/3lJwJZ9
https://amzn.to/392zVeG
https://amzn.to/38RFHQx
https://app.techexplorations.com/courses/arduino-step-by-step-getting-serious/

2. How to drive a DC motor without a
motor driver module
Motors guide series

How to drive a DC motor
without a motor driver
module
DC motors draw currents that can be beyond the ability of the
Arduino to supply. Transistors can be used as very simple at
fast on/off switches and are an excellent option for designing
simple motor controllers.

Extracted from https://techexplorations.com
Page 8

Any DC motor can be driven with PWM simple signals that can
be generated by the Arduino Uno and virtually any other
microcontroller. Just like you can control the intensity of an
LED, you can use PWM to control the rotational speed of a DC
motor.

Whether it is a miniature 3V motor for toys, or a large 12V or
24V motor for your lawnmower, the principle of operation is
the same.

DC motors and current requirements
The amount of current that a DC motor requires depends on
the size of the motor. How large it is, the length of the wire in
the motor coils, and the load that is attached to the motor.
Because the Arduino Uno can only supply a few tens of
milliamps (20mA, to be exact) of current through its digital
pins, you should assume that it will not be able to safely power

Extracted from https://techexplorations.com
Page 9

https://en.wikipedia.org/wiki/DC_motor
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://store.arduino.cc/usa/arduino-uno-rev3

even the smallest DC motor.

A motor draws the most current when its rotor is stationary.
This is true when it starts, or when it is unable to move the
attached load.

A 3V to 5V DC motor used in hobby applications.

Things get worse for larger motors. A 12V DC motor with
nominal resistance in its coil of 15 will draw around 0.8A of
current when it’s starting its rotation. That’s way too much,
and it can damage destroy your Arduino.

For example, a tiny 3V DC motor with a 15 total resistance in
its coil (like the one in the photo above) will draw 0.2A of
current.

This is just within the Arduino’s I/O pin current limit. However,
but if your motor’s resistance is slightly smaller, the current
can easily increase more than the 0.4A which exceeds the

Extracted from https://techexplorations.com
Page 10

Arduino’s safe operating limits. If this happens, your Arduino
will be damaged.

DC motor driver hardware
This is why we use specialized motor driver hardware to power
and control the motor.

The L298N motor driver is easy to use and cheap, with a peak
current capability of 3A. This amount of current is sufficient for
more regular applications, like controlling a small fan or a
robot.

A transistor as a simple DC motor
controller
If you are looking for the simplest possible way to control a DC
motor, then you will need a single transistor. You can choose a
transistor that is appropriate for the current requirements of
the motor that you want to control.

A DarlingtonTIP122transistor is a common device used in DC
motor control applications.

Extracted from https://techexplorations.com
Page 11

https://amzn.to/35GT6bW
https://en.wikipedia.org/wiki/Darlington_transistor
https://amzn.to/35K4BiW
https://en.wikipedia.org/wiki/Transistor

A Dalrington transistor used to control a DC motor.

The Darlington TIP122 can provide 5A of continuous current
through its collector and 15A of peak current, which can be
drawn when a large motor starts. You can see it marked as
“T1” in the schematic above.

Your Arduino can easily control the transistor, since it only
needs 2.5V in its base to switch on (notice the label “Control
signal” on the left of the current limiting resistor in the
schematic above).

You can add a resistor (~3.3k) to protect the Arduino across
the base of the transistor, and a diode (like the 1N4004) to
block back-currents from the motor, and you have your motor
driver, capable of regulating the rotational speed using PWM. If
your motor is brushed, also add a small capacitor (~1uF)
across the terminals of the motor to help with the electrical
noise.

Extracted from https://techexplorations.com
Page 12

The power that drives the motor can come from an external
power supply or a large batter. For example, you can drive a
12V motor from a mains (walled) 12V power supply that you
recycle from an old appliance. In the example schematic, I am
using a 5V power source for the motor.

In your Arduino sketch, you can use a simple PWM sketch like
this:

[tcb-script
src=”https://cdnjs.cloudflare.com/ajax/libs/prism/9000.0.1/pris
m.min.js”][/tcb-script]int motor = 9; int speed = 0; int
speedAmount = 5; void setup() { pinMode(motor, OUTPUT); }
void loop() { analogWrite(motor, speed); speed = speed +
speedAmount; if (speed <= 0 || speed >= 255) {
speedAmount = -speedAmount; } delay(30); }

According to the sketch, the base of the transistor, via the
resistor, is connected to Arduino’s pin 9. In setup(), we
configure the pin to be an output. In the loop(), we use
analogWrite() to get the motor to gradually increase its
rotational speed, and then to gradually decrease it.

Learn more
An excellent discussion of the use of discreet transistors to
control a DC motor with schematics is here.

If you would like to learn how to use DC motors with the
Arduino, consider enrolling to Arduino Step by Step Getting
Serious.

We cover stepper motors in a dedicated section (Section 16)
that contains 10 lectures.

Extracted from https://techexplorations.com
Page 13

https://www.arduino.cc/reference/en/language/functions/analog-io/analogwrite/
https://www.getdrip.com/9737871/campaigns/496145882/emails/2276288/txplo.re/1Q4I6HS?__s=xxxxxxx&utm_source=drip&utm_medium=email&utm_campaign=RF+-+Tech+Explorations+Tips&utm_content=Tech+Explorations+Tip+%2311%3A+Driving+a+large+DC+motor+without+a+motor+driver
https://app.techexplorations.com/courses/arduino-step-by-step-getting-serious/
https://app.techexplorations.com/courses/arduino-step-by-step-getting-serious/

3. What is microstepping?
Motors guide series

What is
“microstepping”?
Stepper motors move in steps. The width of a step is
determined by the physical characteristics of the motor’s
rotor. With a clever technique called “microstepping”, your
stepper motor can double, quintuple or even octuple its
precision. Read this article to also learn new words.

Stepper motors are capable of moving their rotor on specific
positions along a 360° arc. The exact positions are defined by
the positions of the toothed electromagnets positioned on the
central rotor.

Extracted from https://techexplorations.com
Page 14

What is a stepper motor “step”?
In the photograph below, you can see the exposed central
rotor of a stepper motor. Along the perimeter of the rotor, you
can see the “teeth”, arranged in equal distances from their
neighbors.

Because to the magnetic properties of these teeth, and the
energizing pattern of the coils positioned on the inside of the
motor’s casing, the rotor can be aligned precisely.

A stepper motor is designed to move at one step at a time by
energizing its coils at the exact right times. When the motor
moves like this (1 step at a time) it also moves within its
torque specifications.

Standard stepper motors, like the one pictured above, have
rotors with 200 teeth. There is a 1.8° separation between each
tooth, which means that the rotor can move in steps of 1.8°,
and do a full rotation by completing 200 steps.

Extracted from https://techexplorations.com
Page 15

What is a “microstep”?
If a precision of 1.8° is not enough, it is possible to increase it
through the use of “magic” created in electronics hardware
and microcontroller firmware. Essentially, we can have stepper
motors that can operate at far higher precisions then their
manufactured specifications.

Stepper motor drivers such as the EasyDriver can do
microstepping. Microstepping is a technique that makes it
possible to reduce the size of a step at the expense of torque.
In other words, you get more accuracy and smoother motion
with less turning force.

Microstepping is an elegant trick; it is a bit of a juggling act.

Microstepping with Easydriver
The EasyDriver energizes the two coils so finely that it
manages to keep the motor in-between its regular resting
positions. That is why when you do microstepping, both the
motor and the EasyDriver can get very hot. They get hot
because microstepping is hard work.

You can read about the EasyDriver microstepping modes in the
documentation. Look for Q12. I am copying the relevant part
here for convenience:

EasyDriver microstepping
The Easy Driver is able to operate in 1/8th, 1/4, half, and full
step (2 phase) modes.

These four modes are selected by the logic levels on the MS1
and MS2 input pins.

Extracted from https://techexplorations.com
Page 16

https://www.schmalzhaus.com/EasyDriver/
https://en.wikipedia.org/wiki/Stepper_motor#Microstepping
http://www.schmalzhaus.com/EasyDriver/

Normally, the pull-up resistors on the Easy Driver hold MS1
and MS2 high, which results in a default setting of 1/8th
microstep mode.

You can pull either or both to ground to select the other 3
modes if you want. See the table below:

MS1 MS2 Resolution
low low Full Step (2 phase)
high low Half Step
low high Quarter Step
high high Eighth Step

For a motor like the common 28BYJ-48 (pictured below), one
step is 5.625° (specs).

With the EasyDriver, depending on the state of the MS1 and
MS2 pins, you can get it to move at 5.625° /2 = 2.8125° (half
step), 5.625° /4 = 1.4062° (quarter step) and 5.625° /8 =
0.7031° (eight step).

The 28BYJ-48 – 5V Stepper Motor

You can control MS1 and MS2 with wires connected to GND or
5V, dip switches, or just connected to the Arduino and control
them in your sketch.

Extracted from https://techexplorations.com
Page 17

http://robocraft.ru/files/datasheet/28BYJ-48.pdf

How to figure out the stepper motor coils
To find which wires correspond to a coil, look at the diagram in
the datasheet.

It will be a bit tedious because of the middle connection but
think about this: when you connect the pink and blue wires
with your multimeter, you will get the largest resistance.

Only one pair can do this because these two pins wire contain
the entire coil wire.

If you connect pink-red or orange-red, or red-yellow or red-
blue, you will get the smallest resistance because they contain
only part of the coil wire.

Extracted from https://techexplorations.com
Page 18

http://robocraft.ru/files/datasheet/28BYJ-48.pdf

Now you can know the red (common wire). And when you
connect pink-orange and yellow-blue, you will get the middle
resistance.

With a bit of patience and a notebook, you can work out the
coils.

Learn more
If you would like to learn how to use Easydriver with your
Arduino, consider enrolling to Arduino Step by Step Getting
Serious.

We have 5 dedicated lectures in Section 18.

Extracted from https://techexplorations.com
Page 19

https://app.techexplorations.com/courses/arduino-step-by-step-getting-serious/
https://app.techexplorations.com/courses/arduino-step-by-step-getting-serious/
https://wp.techexplorations.com/wp-content/uploads/2020/01/DSC_0114-1000h-square.jpg

4. Direct current motor
Motors guide series

Direct current motor
Direct current motors represent the easiest way to add
movement to your projects. A direct current or DC motor can
be a very cost effective and flexible solution for all sorts of
projects: robots, cars, boats, toy helicopters, home
automation, and many more.

In this article, you will learn how to use a DC motor through a
series of three projects.

To implement the projects, you will need two 5V DC motors
and a L289N motor driver module.

Here’s the project outcomes:

Extracted from https://techexplorations.com
Page 20

https://amzn.to/3m0wYPP
https://amzn.to/36VyNHa

Project 1: connect the motors to the Arduino
via the motor driver module, and make them
spin in a single direction.
Project 2: use a potentiometer to control the
direction of rotation and speed of the
motors.
Project 3: use an ultrasonic sensor to control
the rotational speed the motors.

Before we get into the projects, I want do a quick introduction
to motors, and specifically to discuss the kinds of motors you
can use in your projects.

Types of motors

DC motors

The most common type of motor is the DC (Direct Current)
motor. DC motors are low cost devices that work by
connecting two wires to positive and negative voltage. Once
you connect them to power, the rotor will turn. The direction of
the rotor spin depends on the polarity of the connection. To
reverse the direction of the spin, just switch the electrical
connections.

Extracted from https://techexplorations.com
Page 21

https://en.wikipedia.org/wiki/Potentiometer
https://en.wikipedia.org/wiki/DC_motor
https://en.wikipedia.org/wiki/DC_motor

All electrical motors work by taking advantage of the forces
generated by a magnet (permanent or temporary
electromagnet) and the electric field generated by electrical
current as it travels through a coil. (Here is the source of the
schematic below).

Extracted from https://techexplorations.com
Page 22

https://en.wikipedia.org/wiki/Electromagnet
https://en.wikipedia.org/wiki/Electric_field
https://en.wikipedia.org/wiki/Electric_current
https://en.wikipedia.org/wiki/Electric_current
http://www.electrical4u.com/working-or-operating-principle-of-dc-motor/

The DC motor can spin very quickly, which often is not what
we want in our applications. For example, if you are building
mechanism that opens the shutters of a window, you would
like the shutter to open slowly to avoid damaging it. A DC
motor on its own would try to get to full speed immediately.
So, in most cases people attach a gear box to the motor. The
gear box will convert high rotational spin from the shaft of the
motor to lower rotational speed but higher torque so that large
loads can be moved.

Stepper motors

Another common type of motor is the stepper motor.

A stepper motor operates by moving the motor rotor in steps,
hence the name. I have written a dedicated article on stepper
motors.

While the DC motor will move continuously as long as there is
power, a stepper motor will move by one step when an
appropriate signal is send via a wire, and then stop. Additional
signals are needed for the rotor to move further. The size of
each step (measured in degrees) depends on the mechanical
characteristics of the motor as well as the characteristics of
the electronic signals it receives on its coils.

For applications where you need fine control and small
movements, a stepper motor is a good choice. For example,
they are used in 3-D printers, where milli-meter accuracy is
needed.

Extracted from https://techexplorations.com
Page 23

https://en.wikipedia.org/wiki/Transmission_(mechanics)
https://en.wikipedia.org/wiki/Stepper_motor
https://techexplorations.com/guides/arduino/peripherals/pir-arduino-2/

Stepper motors tend to be bulkier and more expensive then
DC motors. They contain multiple coils and more complicated
mechanical components, and that is reflected in their cost. The
electronics needed to control stepper motors are also more
complicated compared to DC motor controllers.

Servo motors

A common problem with stepper motors is that in certain
situations (usually under high load), there is a mismatch
between the signal that the motor controller is sending and
the actual mechanical movement that the motor produces. In
simple words, the rotor may “miss” steps and the controller
will never know because usually there is no feedback
mechanism to track and confirm movement.

Extracted from https://techexplorations.com
Page 24

A servo motor is designed to remedy this problem. A servo
motor contains a DC motor, a gear box, and a position
feedback mechanism. This mechanism can convert a simple
DC motor into an a motor that can achieve precision
movement with the ability to report its position to its controller
circuit. Servo motors are used extensively in robotics,
manufacturing automation systems, and high-end toys.

Now that you have a better understanding of motors, time to
roll up your sleves and work on Project 1.

Learn more
If you would like to learn how to use DC motors with your
Arduino, consider enrolling to Arduino Step by Step Getting
Serious.

We have a full section (Section 16) with 10 lectures dedicated
to this topic.

Extracted from https://techexplorations.com
Page 25

https://en.wikipedia.org/wiki/Servomotor
https://app.techexplorations.com/courses/arduino-step-by-step-getting-serious/
https://app.techexplorations.com/courses/arduino-step-by-step-getting-serious/

5. Project 1: Control two DC motors with
your Arduino and the L298N controller
Motors guide series

Project 1: Control two DC
motors with your Arduino
and the L298N controller
The L298N motor controller is a low cost and simple way to
control two DC motors at the same time. It works well with the
Arduino, and once you learn how to use it, you will be able to
apply it on a wide range of DC motors.

In this article you will learn how to control two 5V DC motors
with your Arduino.

To enable the Arduino to safely control the motors, you will
use the L298N motor controller module.

Extracted from https://techexplorations.com
Page 26

https://amzn.to/36LXrdm
https://amzn.to/38ZPBQc

I will be using two geared DC motors from a toy tank that I
stole from my kids (they originally stole it from me).

The DC motor controller module
Even though you could connect a small DC motor directly to
the Arduino, it is not a good idea.

The Arduino can only provide a very small amount of current
to external devices. Only the tiniest of motors would be
satisfied with that.

In virtually all real-life applications, you should provide
external power to the motor.

To do this, I am going to use a popular motor driver module
that contains the L298N motor driver “bridge”. This integrated
circuit (IC) can provide enough current to our motors, so we
can use them in power-hungry applications. The L298N IC
can’t be used on its own. It requires several other components
to operate properly, such as capacitors and diodes, a heatk
sink etc.

Therefore, it is convenient to use a module that contains the
L298N and all of the required components on a single board,
like as the one in this image below.

Extracted from https://techexplorations.com
Page 27

https://www.st.com/resource/en/datasheet/l298.pdf
https://en.wikipedia.org/wiki/Heat_sink
https://en.wikipedia.org/wiki/Heat_sink

Project parts list
You will need the following components for this circuit:

Two 5V DC motors.1.
An Arduino Uno.2.
A motor controller module with the L298N3.
chip.
One AA-battery pack with 4 batteries.4.
A bunch of jumper wires.5.

Extracted from https://techexplorations.com
Page 28

https://wp.techexplorations.com/wp-content/uploads/2020/11/2020-11-20_10-00-34.png
https://amzn.to/36LXrdm
https://amzn.to/2IVeNfZ
https://amzn.to/38ZPBQc
https://amzn.to/38ZiIms
https://amzn.to/36TZFHt

Circuit assembly process
Follow these instructions to make the connections and build
your circuit. Refer to the annotated photograph of the L298N
module above for the pin names.

Start by unplugging the Arduino from your computer so that it
is not in operation.

Connect the first motor to motor controller1.
module Out1 and Out2. The order does not
matter.
Connect the first motor to motor controller2.
module Out3 and Out4. The order does not
matter.
Connect the positive wire from the battery3.
pack to pin +12V on the module.
Connect the negative wire from the4.
battery pack to pin GND on the module.
Connect the GND pin of the module to the5.
GND pin of the Arduino.
Connect Arduino pin 5 to module pin In1.6.
Connect Arduino pin 4 to module pin In2.7.
Connect Arduino pin 3 to module pin In3.8.
Connect Arduino pin 2to module pin In4.9.
Inspect the wiring and ensure they are10.
correct.

And here’s what the assembled circuit looks like:

Extracted from https://techexplorations.com
Page 29

Let’s look at the role of each pin in the motor controller
module.

Out1 and Out2 control the speed and direction of motor 1.

Out3 and Out4 control motor 2.

As we are using DC motors, the higher the voltage differential
between the pins in those pairs, the faster the motors will spin.
If you want to reverse the motors, you must change the
polarity of these pins. This is something that the L298N will do
for you with the appropriate signal in the input pins.

In1 and In3 control the direction of spin for motor 1 and motor
2 respectively.

In2 and In4 control the speed for each motor.

Pin “+12V” receives power from an external power source. In
this experiment, the safest option is to use an AA battery pack.
If you use alkaline batteries, you will have 4 x 1.5V = 6V. This
is sufficient to drive our two motors.

Finally, pin “GND” is for ground, and should be connected to
one of Arduino’s GND pins so that both the Arduino and the
module share the same ground voltage level.

Extracted from https://techexplorations.com
Page 30

https://wp.techexplorations.com/wp-content/uploads/2020/11/2020-11-20_10-18-49.png

Sketch for project 1
Here’s the sketch for Demo 1:

//Arduino PWM Speed Control

int E1 = 5; int M1 = 4;int E2 = 6; int M2 = 7;

void setup(){ pinMode(M1, OUTPUT); pinMode(M2, OUTPUT);}

void loop(){ int value; for(value = 0 ; value <= 255;
value+=1) { digitalWrite(M1,HIGH); digitalWrite(M2,HIGH);
analogWrite(E1, value); //PWM Speed Control analogWrite(E2,
value); //PWM Speed Control delay(30); } }

We start by setting the digital pins for the motor 1 and motor 2
control. We need two pins to control each motor. The “M” pins
control the direction of rotation for the motor shafts, and the
“E” pins control the speed.

In the setup() function we set the mode for pins M1 and M2 to
be output (so we can control the direction of the spin).

In the loop() function, we have a “for” loop that cycles from 0
to 255, so it covers all the possible PWM values that can be
written to pins E1 and E2 (Arduino pins 5 and 6 respectively).

Every time that the block in this loop runs, we first set the
direction of spin for both motors by writing a HIGH value to
pins M1 and M2 (Arduino pins 4 and 7 respectively), and then
we set the spin by using the PWM function analogWrite. The
value we write to these pins is controlled by the “for” loop.

Once you connect this circuit and run the loop, you will have
your motors starting from zero speed, speeding up gradually
until they reach their maximum rotational speed, before they
suddenly stop to a halt and then repeating the same processes
again, until power is switched off.

To change the direction of rotation, just change the value you

Extracted from https://techexplorations.com
Page 31

write to either M1 or M2 pins to LOW, and upload the sketch.
You will see the corresponding motor shaft moving the
opposite way compared to the original sketch.

Learn more
If you would like to learn how to use DC motors with your
Arduino, consider enrolling to Arduino Step by Step Getting
Serious.

We have a full section (Section 16) with 10 lectures dedicated
to this topic.

Extracted from https://techexplorations.com
Page 32

https://app.techexplorations.com/courses/arduino-step-by-step-getting-serious/
https://app.techexplorations.com/courses/arduino-step-by-step-getting-serious/
https://wp.techexplorations.com/wp-content/uploads/2020/01/DSC_0114-1000h-square.jpg

6. Project 2: Control speed and direction
with a potentiometer
Motors guide series

Project 2: DC motor
speed and direction
control with a
potentiometer
In this project, you will learn how to control the speed and
direction of spin of the DC motor’s rotor. You will use a
potentiometer to provide input to the Arduino, and the map()
and analogWrite() functions in your sketch to make this work.

Extracted from https://techexplorations.com
Page 33

In Project 1 you learned how to control two DC motors with an
Arduino Uno and an L298N motor driver. In this experiment
you will take the next step. You will learn how to control the
speed and the direction of the two motors. In the role of the
user interfaceyou will use a 10 k potentiometer.

You will use the potentiometer in two ways:

First, you will use the potentiometer to
control the speed of the motors, but not the
direction.

Extracted from https://techexplorations.com
Page 34

https://techexplorations.com/guides/arduino/motors/dc-motor-lm298n-arduino-project1/

Second, you will use the potentiometer to
control both the speed and the direction o
the motors.

The project 2 components
You will only need to add a 10kOhm potentiometer to the
circuit of Project 1. To save you from jumping to the Project 1
page, I’m copying the full list of components here.

The new item is #6:

Two 5V DC motors.1.
An Arduino Uno.2.
A motor controller module with the L298N3.
chip.
One AA-battery pack with 4 batteries.4.
A bunch of jumper wires.5.
A 10 k potentiometer.6.

The project 2 circuit
Let’s do the wiring. You can add the potentiometer to the
circuit from Project 1. I am copying here the complete
instructions so that you don’t have to jump back and forth
between the two articles.

The new items in the list are #10 and #11.

Start by unplugging the Arduino from your computer so that it
is not in operation.

Connect the first motor to motor controller1.
module Out1 and Out2. The order does not

Extracted from https://techexplorations.com
Page 35

https://techexplorations.com/guides/arduino/motors/dc-motor-lm298n-arduino-project1/
https://techexplorations.com/guides/arduino/motors/dc-motor-lm298n-arduino-project1/
https://techexplorations.com/guides/arduino/motors/dc-motor-lm298n-arduino-project1/
https://amzn.to/36LXrdm
https://amzn.to/2IVeNfZ
https://amzn.to/38ZPBQc
https://amzn.to/38ZiIms
https://amzn.to/36TZFHt
https://amzn.to/2HgeYl4
https://techexplorations.com/guides/arduino/motors/dc-motor-lm298n-arduino-project1/

matter.
Connect the first motor to motor controller2.
module Out3 and Out4. The order does not
matter.
Connect the positive wire from the battery3.
pack to pin +12V on the module.
Connect the negative wire from the4.
battery pack to pin GND on the module.
Connect the GND pin of the module to the5.
GND pin of the Arduino.
Connect Arduino pin 5 to module pin In1.6.
Connect Arduino pin 4 to module pin In2.7.
Connect Arduino pin 3 to module pin In3.8.
Connect Arduino pin 2 to module pin In4.9.
Connect the middle pin of the10.
potentiometer to Arduino pin A0.
Connect the other two pins of the11.
potentiometer to Arduino pins 5V and
GND.
Inspect the wiring and ensure they are12.
correct.

Here’s the demo 2 circuit:

Extracted from https://techexplorations.com
Page 36

The only difference to the Project 1 circuit is the addition of the
rotary potentiometer. It is connected to the 5V and GND
columns on the breadboard, and to analog pin 0 on the
Arduino. The 9V batteries depict the motor battery power
supply. The black module in the middle of the breadboard
depicts the L298N motor driver module with the connections
as described earlier.

Extracted from https://techexplorations.com
Page 37

https://techexplorations.com/guides/arduino/motors/dc-motor-lm298n-arduino-project1/

Sketch for Project 2, version 1: Control
speed with a potentiometer
Here’s the first sketch for Project 2. This sketch allows the
control of only the rotational speed of the two motors:

int E1 = 5; int M1 = 4;int E2 = 6; int M2 = 7;

void setup(){ Serial.begin (9600); pinMode(M1, OUTPUT);
pinMode(M2, OUTPUT);}

void loop(){ int potentiometerVal = analogRead(A0);
Serial.println(potentiometerVal);
move_motors(potentiometerVal);}

void move_motors(int potValue){ int mappedVal =
map(potValue,0,1023,0,255); digitalWrite(M1,HIGH);
digitalWrite(M2, HIGH); analogWrite(E1, mappedVal); //PWM
Speed Control analogWrite(E2, mappedVal); //PWM Speed
Control delay(30); }

I have highlighted the changes and additions from the sketch
in Project 1 in red.

In the loop() function, we take a reading from analog pin 0
where the middle pin of the potentiometer is connected. We
then call the function move_motors and pass the
potentiometer reading to it.

Inside the move_motors() function, we map the
potentiometer reading (which comes in the range of 0 to 1023)
to a value between 0 and 255 (which is the range of valid
values for the PWM pins), set the direction of rotation for the
two motors using the digitalWrite functions, and set the
speed using the PWM function analogWrite() to be
mappedVal (which in turn is relevant to the value we set by
turning the potentiometer).

Upload this sketch and turn the knob of the potentiometer

Extracted from https://techexplorations.com
Page 38

back and forth. See how the speed of the motors change
accordingly?

Sketch for Project 2, version 2: control
speed and direction with a potentiometer
There’s one more thing to do, and that is to also be able to
control the direction of rotation of the motors, not just the
speed. What I’d like to do is to be able to accelerate the motor
towards one direction when I turn the knob of the
potentiometer towards the left, and to the opposite direction
when I turn the knob towards the right.

Schematically, this is what I would like to achieve: The red
circle represents the potentiometer knob, and the black shows
movement of the knob towards the left or the right.

Motors move anti-clockwise

Neutral – motors don’t move

Motors move clockwise

We are only going to make an adjustment to the sketch to
make this happen, no need to modify the circuit at all.

Here is the modified sketch:

Extracted from https://techexplorations.com
Page 39

//Arduino PWM Speed Control

int E1 = 5;

int M1 = 4;

int E2 = 6;

int M2 = 7;

void setup()

{

Serial.begin (9600);

pinMode(M1, OUTPUT);

pinMode(M2, OUTPUT);

}

void loop()

{

int potentiometerVal = analogRead(A0);

Serial.println(potentiometerVal);

move_motors(potentiometerVal);

}

void move_motors(int potValue)

{

if (potValue< 512)

Extracted from https://techexplorations.com
Page 40

{

int mappedVal = map(potValue,0,512,0,255);

//Going forward

digitalWrite(M1,HIGH);

digitalWrite(M2, HIGH);

analogWrite(E1, mappedVal); //PWM Speed Control

analogWrite(E2, mappedVal); //PWM Speed Control

delay(30);

} else

{

//Going backward

int mappedVal = map(potValue-512,0,512,0,255);

digitalWrite(M1,LOW);

digitalWrite(M2, LOW);

analogWrite(E1, mappedVal); //PWM Speed Control

analogWrite(E2, mappedVal); //PWM Speed Control

delay(30);

}

}

I have highlighted in red the part of the sketch that has
changed from the script in demo 2.

Extracted from https://techexplorations.com
Page 41

In the move_motors(int pot_value) function, potValue, the
value read from analog pin 0 where the potentiometer is
connected, is tested using the if function. If potValue is less
than 512, then the first block is executed, if not then the
second block is executed.

In block 1 and 2, the motor control functionality from demo 2
is repeated with the difference that now we now need to
recognize that the potentiometer’s range of output values is
divided to two parts. The first part, from 0 to 512, is used for
moving the motors towards one direction, while the second
one, 513 to 1023, moves the motors towards the other
direction.

The only other difference between these two blocks is that in
Block 1, a HIGH is written to M1 and M2, while in Block 2 we
write a LOW, therefore spinning the motors towards the
opposite direction.

Go ahead, try it.

If you are having any difficulty understanding what is going on
in Blocks 1 and 2, experiment with the sketch. Try changing
the map function values to something different.

For example, in Block 2, instead of

map(potValue-512,0,512,0,255)

try

map(potValue,0,512,0,255)

and upload the sketch.

What happens to the rotational speed of the motors?

Perhaps you could try this too:

map(potValue,512,1023,0,255).

Extracted from https://techexplorations.com
Page 42

Upload and compare to the previous two versions.

Can you notice any difference in behavior?

Can you explain any differences or similarities?

Learn more
If you would like to learn how to use DC motors with your
Arduino, consider enrolling to Arduino Step by Step Getting
Serious.

We have a full section (Section 16) with 10 lectures dedicated
to this topic.

Extracted from https://techexplorations.com
Page 43

https://app.techexplorations.com/courses/arduino-step-by-step-getting-serious/
https://app.techexplorations.com/courses/arduino-step-by-step-getting-serious/
https://wp.techexplorations.com/wp-content/uploads/2020/01/DSC_0114-1000h-square.jpg

7. Project 3: DC motor control with a
distance sensor
Motors guide series

Project 3: DC motor
speed control with a
distance sensor
Let’s try a variation of the Project 2 experiment: control the
speed of the DC motor with an ultrasonic distance sensor. Of
course, we’ll use an Arduino and the L298N motor driver.

Extracted from https://techexplorations.com
Page 44

After completing Project 1 and Project 2, you have learned how
to control a motor with your Arduino and the L298N driver
module. You can replace the potentiometer of Project 2 with a
joystick, without many modifications to the sketch. You can
see how, from a humble beginning, you can start branching
out and experimenting with different types of hardware, to
gradually reach more interesting configurations.

In this article, I will describe one last experiment that involves
a DC motor. We will connect an ultrasonic distance sensor in
the place of the potentiometer, and use that to control the
rotational speed of the motors. The idea is this: The distance

Extracted from https://techexplorations.com
Page 45

https://techexplorations.com/guides/arduino/motors/dc-motor-lm298n-arduino-project1/
https://techexplorations.com/guides/arduino/motors/dc-motor-speed-direction-lm298n-arduino-project2/

sensor will tell the Arduino how close it is to an obstacle. If it
gets too close, it will start slowing down the motors, effectively
slowing down our prototype vehicle. Otherwise, it will forge
ahead full speed.

The project 3 components
To complete this project, you will built on the circuit from
Project 2. If you have completed Project 2, you will only need
one additional component: the HCSR04 ultrasonic distance
sensor. This sensor will replace the potentiometer.

The HC-SR04 ultrasonic distance sensor.

To save you from jumping to the Project 2 page, I’m copying
the full list of components here.

The new item is #6:

Two 5V DC motors.1.
An Arduino Uno.2.
A motor controller module with the L298N3.
chip.

Extracted from https://techexplorations.com
Page 46

https://techexplorations.com/guides/arduino/motors/dc-motor-speed-direction-lm298n-arduino-project2/
https://techexplorations.com/guides/arduino/motors/dc-motor-speed-direction-lm298n-arduino-project2/
https://amzn.to/36LXrdm
https://amzn.to/2IVeNfZ
https://amzn.to/38ZPBQc

One AA-battery pack with 4 batteries.4.
A bunch of jumper wires.5.
A HCSR04 ultrasonic distance sensor.6.

The project 3 circuit
Time to do the wiring. You can remove the potentiometer to
the circuit from Project 2 and replace it with the ultrasonic
distance sensor. I am copying here the complete instructions
so that you don’t have to jump back and forth between the two
articles.

The new connections that relate to the ultrasonic distance
sensor are #10, #11, #12 and #13.

Start by unplugging the Arduino from your computer so that it
is not in operation.

Connect the first motor to motor controller1.
module Out1 and Out2. The order does not
matter.
Connect the first motor to motor controller2.
module Out3 and Out4. The order does not
matter.
Connect the positive wire from the battery3.
pack to pin +12V on the module.
Connect the negative wire from the4.
battery pack to pin GND on the module.
Connect the GND pin of the module to the5.
GND pin of the Arduino.
Connect Arduino pin 5 to module pin In1.6.
Connect Arduino pin 4 to module pin In2.7.
Connect Arduino pin 3 to module pin In3.8.

Extracted from https://techexplorations.com
Page 47

https://amzn.to/38ZiIms
https://amzn.to/36TZFHt
https://amzn.to/3kKgauJ
https://techexplorations.com/guides/arduino/motors/dc-motor-speed-direction-lm298n-arduino-project2/

Connect Arduino pin 2 to module pin In4.9.
Connect the sensor pin Vcc to Arduino10.
pin 5V.
Connect the sensor pin GND to Arduino11.
pin GND.
Connect the sensor pin Trig to Arduino12.
pin 13.
Connect the sensor pin Echo to Arduino13.
pin 12.
Inspect the wiring and ensure they are14.
correct.

Here’s the schematic:

Extracted from https://techexplorations.com
Page 48

As with Project 2, the 9V batteries depict the motor battery
power supply. The black module in the middle of the
breadboard depicts the L298N motor driver module with the
connections as described earlier.

The ultrasonic distance sensor uses 4 wires, two for power (5V
and GND), one for the Trigger pin, and one for Echo. Connect
those wires as per the instructions

Extracted from https://techexplorations.com
Page 49

Sketch for Project 3
Here’s the sketch for this project.

//Arduino PWM Speed Control

int E1 = 5;

int M1 = 4;

int E2 = 6;

int M2 = 7;

#define trigPin 13

#define echoPin 12

void setup()

{

Serial.begin (9600);

pinMode(M1, OUTPUT);

pinMode(M2, OUTPUT);

pinMode(trigPin, OUTPUT);

pinMode(echoPin, INPUT);

}

void loop()

{

Extracted from https://techexplorations.com
Page 50

long duration, distance;

digitalWrite(trigPin, LOW);

delayMicroseconds(2);

digitalWrite(trigPin, HIGH);

delayMicroseconds(10);

digitalWrite(trigPin, LOW);

duration = pulseIn(echoPin, HIGH);

distance = (duration/2) / 29.1;

move_motors(distance);

}

void move_motors(int distance)

{

if (distance >= 50){

Serial.print(distance);

Serial.println(” cm – 255);

digitalWrite(M1,HIGH);

digitalWrite(M2, HIGH);

analogWrite(E1, 0); //PWM Speed Control

analogWrite(E2, 0);

delay(30);

Extracted from https://techexplorations.com
Page 51

}

else {

int mappedVal = map(distance,0,50,0,255);

Serial.print(distance);

Serial.print(” cm – “);

Serial.println(mappedVal);

digitalWrite(M1,HIGH);

digitalWrite(M2, HIGH);

analogWrite(E1, 255-mappedVal); //PWM Speed Control

analogWrite(E2, 255-mappedVal); //PWM Speed Control

delay(30);

}

}

Much of this code, at least the part in the loop() function, has
been taken from the sketch in Lecture 11. It generates the
ping pulse that is emitted by the sensor, and then calculates
the distance of an object from the time it takes for the echo to
return.

Once the distance is calculated, the move_motors function is
called, and the distance is passed as an integer parameter.
Just like in Demo 2 Version 2, motors are moved in one of two
ways: if distance is 50cm or less, the motor speed is
proportional to the distance. The smaller the distance is, the
smaller the speed. Otherwise, if the distance is over 50cm,
then motors will move at their maximum speed.

Extracted from https://techexplorations.com
Page 52

If these motors were part of a fully assembled vehicle, the
effect of this sketch would be that the vehicle would be
capable of avoiding hitting an object by slowing down on
approach, until it came to a full stop.

Upload the sketch and play with it to get a sense of it in “eal
life”. Try to imagine how it would behave in a real situation.
Can you foresee any limitations? Can you imagine any
improvements?

Improvements
For example, in the current version of the sketch, the vehicle
would come to a complete stop only when the distance to a
wall was 0cm. Is this sufficient? Perhaps it should come to
complete stop a bit earlier, maybe at 5cm? Or perhaps, to be
even more cautious, the vehicle should backup slightly away
from the obstacle in order to provide room for a turns?

Can you make changes to the Demo 3 sketch and implement
these scenarios (or whatever other improvement you can think
of)?

Learn more
If you would like to learn how to use DC motors with your
Arduino, consider enrolling to Arduino Step by Step Getting
Serious.

We have a full section (Section 16) with 10 lectures dedicated
to this topic.

Extracted from https://techexplorations.com
Page 53

https://app.techexplorations.com/courses/arduino-step-by-step-getting-serious/
https://app.techexplorations.com/courses/arduino-step-by-step-getting-serious/

8. Project 1: Control a servo motor with a
potentiometer
Motors guide series

Project 1: Control a servo
motor with a
potentiometer
Servo motors are used in applications where precision
movement is required, such as in robotics. It is very easy to
control one or more servo motors with the Arduino. Learn how
with this article.

Extracted from https://techexplorations.com
Page 54

In other articles in the series (see here and here), you learned
about the DC motor. The DC motor is a versatile, low-priced
solution for providing motion to your projects. A “weakness”
(or characteristic) of the plain vanilla DC motor is that when
you apply voltage to its coil, it will spin as fast as its mechanics
and load allows. Without additional electronics, we have no
way of knowing or controlling the rotor position and speed.

Extracted from https://techexplorations.com
Page 55

https://techexplorations.com/guides/arduino/motors/direct-current-motor/
https://techexplorations.com/guides/arduino/motors/dc-motor-lm298n-arduino-project1/

This is not a problem for applications were continuous
movement is needed, like for propelling a vehicle. However, it
is a problem in application where precision is needed.

Example application of precision
movement
Imagine a robot that can perform surgery on humans. Some of
you may work on something like this in the not so distant
future. In such application, precision and control feedback is of
paramount importance. You don’t just want to tell the motor to
rotate its rotor by 90 degrees; you also want confirmation that
it did.

The servo motor
In a previous article in the series, I made a passing mention of
the servo motor. The servo motor is an enhanced DC motor
that includes circuitry for fine movement control and feedback.

In this and the next article, you will learn how to use a servo

Extracted from https://techexplorations.com
Page 56

https://en.wikipedia.org/wiki/Robot-assisted_surgery
https://techexplorations.com/guides/arduino/motors/direct-current-motor/#t-1605822438190

motor with your Arduino.

To make programming easy, you will use the servo motor
library that comes standard with the Arduino IDE, as well as a
third party library that adds a bunch of very useful capabilities.

Let’s go straight to the assembly and sketches.

A simple servo motor project
In this project, you will use the servo motor library that comes
with the Arduino IDE to start playing with your mini servo
motor. Start by assembling the circuit. Then you will work on
the sketch.

Extracted from https://techexplorations.com
Page 57

https://www.arduino.cc/reference/en/libraries/servo/

Project parts list
You will need the following components for this circuit:

An Arduino Uno.
A mini servo motor.
A 300F capacitor.

Servo motor circuit
This is what you are going to assemble:

Extracted from https://techexplorations.com
Page 58

https://amzn.to/2IVeNfZ
https://amzn.to/2UNfI4w
https://amzn.to/36VBGrr

There are a couple of things to notice here.

First, there is no motor break-out board like the one we used in
the DC motor lecture. There, I wrote that because the Arduino
cannot provide enough current for the motor, it is best to
always use an external power source to power our motors.
This is why you used the L298N motor controller module.

Extracted from https://techexplorations.com
Page 59

https://techexplorations.com/guides/arduino/motors/direct-current-motor/#t-1605822438190

However, the mini servo motor that you are using in this
circuit, is small enough to not stress the Arduino too much.
Therefore, you can safely plug it straight into the Arduino in
order to keep things simple.

Notice the big round tube at the lower part of the breadboard?
That is a capacitor. Even though my servo motor is small,
occasionally it may draw more power than what the Arduino
can provide. This spike in power demands happens when the
motor begins to move.

To assist the battery or other power supply to provide this
additional power, you can use a small capacitor. Connect this
capacitor between the GND and +5V pins of the motor. A
capacitor works as store of energy, a bit like a battery that can
charge and discharge very quickly.

When the servo motor starts, the capacitor will assist the main
power supply by discharging, ensuring that the motor has all
the power it needs.

A capacitor that is around 300F or more is a good choice for a
mini servo motor.

The motor itself has three wires coming out of it.

Two are for power (+5V and GND), and one for signal.

Usually, the red wire is for +5V, and black or brown for GND.

The yellow wire is for the signal.

Plug the signal wire to digital pin 9, the red to +5V and
the black to GND.

Sketch
You could try to control the servo motor through the Arduino
digitalWrite() functions but that would require us figuring out

Extracted from https://techexplorations.com
Page 60

https://www.arduino.cc/reference/en/language/functions/digital-io/digitalwrite/

the right values to write, and the timing for writing those
values.

That’s too much work.

We are lucky, though, because with the Arduino IDE we get the
Servo library, which contains functions that allow us to easily
work with servo motors. First, we’ll write the sketch using the
Servo library.

Later, I’ll show you an alternative library that provides
additional functionality.

Here’s the sketch:

#include <Servo.h>

Servo myservo; // create servo object to control a servo

// a maximum of eight servo objects can be created

int pos = 0; // variable to store the servo position

void setup()

{

// attaches the servo on pin 9 to the servo object

myservo.attach(9);

}

void loop()

{

Extracted from https://techexplorations.com
Page 61

https://www.arduino.cc/reference/en/libraries/servo/

// goes from 0 degrees to 180 degrees

for(pos = 0; pos < 180; pos += 1)

{ // in steps of 1 degree

// tell servo to go to position in variable ‘pos’

myservo.write(pos);

// waits 15ms for the servo to reach the position

delay(15);

}

// goes from 180 degrees to 0 degrees

for(pos = 180; pos>=1; pos-=1)

{

// tell servo to go to position in variable ‘pos’

myservo.write(pos);

// waits 15ms for the servo to reach the position

delay(15);

}}

This is one of the demo sketches that also come with the
Arduino IDE. You can find it by clicking on File —> Examples
—> Servo —> Sweep.

You first include the Servo library (“#include <Servo.h>”),
and create the variable myservo that you can use as a handle
to the Servo object (“Servo myservo;”).

Extracted from https://techexplorations.com
Page 62

In the setup function, you tell the Arduino that the control wire
from our servo motor is attached to digital pin 9
(“myservo.attach(9);”).

The work is done in the loop() function, where you use the “for
loop” to count from 0 to 180, and another one to count
backwards, from 180 to 0. This has the effect of the rotor of
the servo motor traveling 180 degrees to one side, and 180
degrees to the other side, 1 degree at a time, constantly.

Inside each for block, you first write a value to the motor using
myservo.write(d), where “d” is a number representing the
degree to which the shaft should turn. If we want to turn it by
15 degrees, we write myservo.write(15).

Simple, right?

In Block 1, you get the rotor to turn from 0 to 180 degrees, and
in Block 2 to travel all the way back to 0 degrees.

Finally, notice how you set a delay of 15 milliseconds inside
each block, after a movement has been written? We need this
because it takes a bit of time for the motor to move, and you
want to make sure that any previous instruction has been
completed before sending through the next move instruction.

That was easy but not satisfying enough. I want to be able to
control the servo motor myself, instead of the Arduino being in
charge.

How about you try to connect a potentiometer and use it as a
controller for the motor?

Control the servo with a potentiometer
Let’s attach a rotary 10k potentiometer, and adjust our sketch
to enable us control of the motor by turning the knob.

Here’s the new circuit:

Extracted from https://techexplorations.com
Page 63

https://amzn.to/2HgeYl4

Connect the middle of the potentiometer pin to analog pin 0
(A0) on the Arduino. The other two pins connect to +5V and
GND.

The new sketch looks is this:

#include <Servo.h>

Extracted from https://techexplorations.com
Page 64

// create servo object to control a servoServo myservo;

// analog pin used to connect the potentiometer

int potpin = 0;

// variable to read the value from the analog pin

int val;

void setup()

{

// attaches the servo on pin 9 to the servo object

myservo.attach(9);

}

void loop()

{

// reads the value of the potentiometer (0 to 1023)

val = analogRead(potpin);

// scale it to use it with the servo (0 to 180)

val = map(val, 0, 1023, 0, 179);

// sets servo position according to the scaled value

myservo.write(val);

// waits for the servo to get there

Extracted from https://techexplorations.com
Page 65

delay(15);

}

Just like in the first part of this project, you include the Servo
library and set pin 9 as the servo pin.

In the loop() function, the Arduino constantly takes readings
from analog pin 0 (A0) where the potentiometer is attached.

Because the range of values read in A0 is not the same as the
values we can send to the servo, we use the map() function to
scale appropriately.

Finally, we use the myservo.write(val); function to send the
scaled value to the potentiometer.

Learn more
If you would like to learn how to use servo motors with your
Arduino, consider enrolling to Arduino Step by Step Getting
Serious.

We have a full section (Section 17) with 10 lectures dedicated
to this topic.

Extracted from https://techexplorations.com
Page 66

https://www.arduino.cc/reference/en/language/functions/math/map/
https://app.techexplorations.com/courses/arduino-step-by-step-getting-serious/
https://app.techexplorations.com/courses/arduino-step-by-step-getting-serious/

9. Project 2: Setup and play with
VarSpeedServo
Motors guide series

Project 2: Servo motor
control with
VarSpeedServo
Well-crafted libraries allow us to improve the quality of our
gadgets with very little additional effort. In this article, you will
learn how to use a simple library to improve your servo motor
controller sketches with minimal changes in your code.

The build in Servo library is good and very simple to use.
However, there’s more we can do with the hardware than it

Extracted from https://techexplorations.com
Page 67

allows us.

For example, how fast should the motor move from one
position to the next? What about the ability to define a set of
movements for the motor to perform, and then send them with
a single instruction?

To achieve functionality like that, we need to use an external
library. I am going to show you how to use the VarSpeedServo
library, written by Korman and updated by Philip van Allen.
Thank you to both for their work and contribution!

Download & install the VarSpeedServo
library
First, you will need to get this library. Go to the library Github
repository to download it.Click on the green “Code” button to
expand the drop-down menu (“1”), and then click on
“Download ZIP” (“2”) as I show in the screenshot below:

Extracted from https://techexplorations.com
Page 68

https://forum.arduino.cc/index.php?topic=61586.0
https://github.com/pvanallen
https://github.com/netlabtoolkit/VarSpeedServo
https://github.com/netlabtoolkit/VarSpeedServo

Download it somewhere on your computer, and then import it
to your Arduino IDE’s libraries folder. The easiest way to do
this is to use the Arduino IDE’s Include Library option. Start
your Arduino IDE, click on Sketch (“1”) –> Include Library (“2”)
–> Add .ZIP Library (“3”), as in the screenshot below:

In the dialog box that appears, navigate to the location where
the ZIP file is stored on your disk, select it, and click “Choose”.

Extracted from https://techexplorations.com
Page 69

Load the “Sweep” demo sketch
The VarSpeedServo library is now installed and ready to use.
The library comes with several examples. One of them is
“Sweep”, which is perfect for an introduction to the library.
Let’s open it. Go to the Arduino IDE and click on File (“1”) –>
Examples (“2”) –> VarSpeedServo-master (“3”) –> Sweep
(“4”).

Here’s the Sweep sketch:

#include <VarSpeedServo.h>

// create servo object to control a servo// a maximum of eight
servo objects can be createdVarSpeedServo myservo;

// the digital pin used for the servoconst int servoPin = 9;

void setup() {

// attaches the servo on pin 9 to the servo object
myservo.attach(servoPin);

Extracted from https://techexplorations.com
Page 70

// set the initial position of the servo, as fast as possible, wait
until done myservo.write(0,255,true);

}

void loop() {

// move the servo to 180, max speed, wait until done //
write(degrees 0-180, speed 1-255, wait to complete true-false)
myservo.write(180,255,true);

// move the servo to 180, slow speed, wait until done
myservo.write(0,30,true);

}

You can probably see the similarities and differences between
the original Sweep sketch and this one.

In the header of this sketch, you include the VarSpeedServo
library and create the myservo object. You set the servo
signal pin to 9.

In the loop() function, you attached the servo at pin 9 to the
myservo object.

You then send the first command to the servo by using the
myservo.write() function. This looks the same as in the
original Sweep sketch, except that is takes three arguments,
not just one.

It looks like this: myservo.write(position, speed, wait);

The function accepts three parameters:

first, an integer which represents the degree
we’d like the servo to turn to. For example,
15 degrees.
Second, the speed argument which controls

Extracted from https://techexplorations.com
Page 71

https://mpl-publisher.com/guides/arduino/motors/project-1-servo-motors-control-arduino-potentiometer/
https://github.com/netlabtoolkit/VarSpeedServo/blob/master/VarSpeedServo.h#L160

how fast the movement should be. Top
speed is 255, stopped is 0, and anything is
between is allowed.
And third, the wait argument that can block
the program at this line and wait for the
motor to finish its movement. To enable
blocking set this argument to “true”. If you
want to allow the sketch continue instead of
block and let the servo finish its movement
on its own, set this argument to “false”.

Nice, isn’t it?

What do you think happens in the loop() function?

Add a potentiometer
Let’s now connect the potentiometer, like we did in the second
part of the first project, and load the VarSpeedServo example
sketch titled Knob into the Arduino IDE. You will find this
sketch under File (“1”) –> Examples (“2”) –> VarSpeedServo-
master (“3”) –> Knob (“4”).

Extracted from https://techexplorations.com
Page 72

https://techexplorations.com/guides/arduino/motors/project-1-servo-motors-control-arduino-potentiometer/#t-1605888205544
https://mpl-publisher.com/guides/arduino/motors/project-1-servo-motors-control-arduino-potentiometer/#t-1605888205544

Here it is:

#include <VarSpeedServo.h>

// create servo object to control a servo

VarSpeedServo myservo;

// analog pin used to connect the potentiometer

const int potPin = 0;

// the digital pin used for the servo

const int servoPin = 9;

// variable to read the value from the analog pin

int val;

void setup() {

// attaches the servo on pin 9 to the servo object

Extracted from https://techexplorations.com
Page 73

myservo.attach(servoPin);

}

void loop() {

// reads the value of the potentiometer (0 to 1023)

val = analogRead(potPin);

// scale it to use it with the servo (0 to 180)

val = map(val, 0, 1023, 0, 180);

// sets the servo position according to the scaled value

myservo.write(val);

// waits a bit before the next value is read and written

delay(15);

}

Compare this against the sketch from the second part of the
first project.

Isn’t it almost identical?

Notice how the sketch above also makes use of the
myservo.write(val) function, with just a single argument?
The VarSpeedServo library allows you to use the familiar
functions from the build-in Servo library, so that any existing
sketches you may have lying around will still work. You get the
additional functionality, as we saw in the Sweep sketch, for
free!

Extracted from https://techexplorations.com
Page 74

https://techexplorations.com/guides/arduino/motors/project-1-servo-motors-control-arduino-potentiometer/#t-1605888205544
https://wp.techexplorations.com/guides/arduino/motors/project-1-servo-motors-control-arduino-potentiometer/#t-1605888205544
https://github.com/netlabtoolkit/VarSpeedServo/blob/master/VarSpeedServo.h#L155

An exercise
Can you build a circuit that contains a servo motor and three
buttons?

When you press button 1, the motor moves
to 60 degrees.
When you press button 2, it moves to 90
degrees.
When you press button 3, it moves to 180
degrees.

Learn more
If you would like to learn how to use servo motors with your
Arduino, consider enrolling to Arduino Step by Step Getting
Serious.

We have a full section (Section 17) with 10 lectures dedicated
to this topic.

Extracted from https://techexplorations.com
Page 75

https://app.techexplorations.com/courses/arduino-step-by-step-getting-serious/
https://app.techexplorations.com/courses/arduino-step-by-step-getting-serious/

The 2×16 Liquid Crystal Display (LCD)
Arduino displays

The 2×16 Liquid Crystal
Display (LCD)
In this guide, I’ll show you how to incorporate a 2×16 Liquid
Crystal Display into your Arduino-based projects. I’ll go over
the required wiring configurations as well as the sketch.

I recommend connecting the Arduino to the LCD module in 4-
bit parallel mode, and I will provide instructions on how to
upload the sketch and test the LCD.

Introduction
In this article, you’ll learn how to use the 2×16 (two-line, 16-
character each) Liquid Crystal Display (LCD). It’s a
common type of display used in numerous Arduino-based
projects. We’ll use this LCD in our project to display the

Extracted from https://techexplorations.com
Page 76

temperature and humidity readings from the DHT11 sensor.
Our course Arduino IoT Environment Monitor Project teaches
you how to implement this sensor.

The wired-up 2×16 LCD

As you can see in the image above, I have already wired up
the LCD. I’ll explain the setup, and after covering the various
methods of wiring, I will discuss the sketch and display some
demonstration text on the LCD to make sure everything is set
up correctly.

LCD wiring in 4-bit parallel mode

Extracted from https://techexplorations.com
Page 77

https://techexplorations.com/so/arduino_iot_environment_monitor/

Wiring configurations and the sketch
Let’s take a look at the wiring and programming of the 2×16
Liquid Crystal Display. Outlined in this section is the simplest
method for connecting this display to the Arduino used in our
project. It uses more wires to transmit data from the Arduino
to the LCD. However, there is no need for any additional
hardware, making this the simplest wiring method.

Overview of displays
I want to take a moment to discuss displays more broadly. I
thought it would be helpful to let you know that, as is the case
with most electronics, the Arduino is compatible with a wide
variety of displays. The Liquid Crystal Display (LCD) is probably
the simplest way to show text characters, whether it be
numbers, letters, or symbols. The LCD allows for that and
more.

In addition to the standard LCD screen, the Arduino can also
output data to the user via LEDs, LED alphanumeric displays,
and, of course, dot-matrix displays, which excel at displaying
graphics with very small, tiny dot pixels.

If you want to learn more about some of those displays, you
can refer to my other course, Arduino Step-by-Step: Getting
Started, where I have a dedicated section on the liquid crystal
display. Also, on Arduino Step-by-Step: Getting Serious I
demonstrate various types of displays, including dot-matrix
and LED-type displays.

The 2×16 LCD screen
Back to the current topic, if you turn the 2×16 LCD that comes
with the 3 in 1 IoT/Smart Car/Learning Kit for Arduino by
SunFounder around, it will look like the image below.

Extracted from https://techexplorations.com
Page 78

https://techexplorations.com/so/asbsgs2/
https://techexplorations.com/so/asbsgs2/
https://techexplorations.com/so/asbsgsr1/

The 2×16 LCD included in the 3 in 1 IoT/Smart Car/Learning Kit
for Arduino by SunFounder

If you turn the LCD we’re going to use around, you can’t see
any parts other than the pins and bits and pieces that are
mounted on the PCB.

Extracted from https://techexplorations.com
Page 79

The LDC we’ll be using in this project

The black module that you see in the image below is an I2C
backpack.

Extracted from https://techexplorations.com
Page 80

The I2C backpack

The I2C backpack converts the 16 pins visible on the base LCD
module, to four pins on the converted module, which is the
LCD with the black backpack module.

The 16 pins on the base LCD module

Extracted from https://techexplorations.com
Page 81

The 4 pins on the I2C LCD module

This allows you to simplify the wiring by reducing the number
of wires required.

In our example, and I’ll explain why in a moment, we’ll be
using the majority of the LCD module’s back panel pins. When
using the black backpack, you only need four pins, two for
power and the other two for I2C data and the clock. Therefore,
this is the preferred method of connecting the LCD to the
Arduino, from a wiring perspective.

The issue here is that using the I2C backpack increases the
footprint of your sketch. In my experiments, I found that the
Arduino Uno’s memory was too low to accommodate both the
I2C-enhanced LCD and the other features we require in our
sketch. The Arduino Uno’s storage and RAM were taxed by the
tasks of connecting to the internet and the Blynk platform and
reading data from the DHT sensor. After turning on the LCD
screen’s I2C backpack functionality, the sketch stopped
running because it was too much for the Arduino to handle.

Therefore, I used the “standard” 4-bit parallel mode to
connect the Arduino to the LCD module. This particular LCD
screen supports two parallel modes: 4-bit and 8-bit. If we use
the 4-bit mode, we’ll need four data pins. And if we use the 8-
bit parallel mode, we’ll need to use eight data pins.

Wiring
In terms of the wiring, it looks like this:

Extracted from https://techexplorations.com
Page 82

The Fritzing version of the sketch

Extracted from https://techexplorations.com
Page 83

The KiCad version of the sketch

The same wiring is shown above from two different design
versions. For the left one, I’m using Fritzing, which is more
graphical and representative. I’m using a KiCad schematic for
the right one.

However, in either case, the green wires are used to transfer
data in 4-bit parallel mode. As you can see, I’m using four of
them. If I had used 8-bit parallel mode, I would have needed to
use four more of those pins as well as four more Arduino pins
to make the connection. Obviously, we wouldn’t be able to
connect anything else because we would have used up nearly
all of the Arduino Uno’s digital pins.

Extracted from https://techexplorations.com
Page 84

The 4-bit parallel connection mode

So we’ll use a 4-bit parallel connection mode for this LCD.
Starting with the data pins, we’ll connect them as follows: The
rightmost green cable, as seen in the image above, will
connect pin D7 on the LCD module to digital pin 2 on the
Arduino. Because we are using a four-pin parallel mode
connection, after connecting pins 6, 5, and 4, pins 3, 2, 1, and
0 will remain unconnected. The LCD module’s four pins will
connect to the Arduino’s digital pins 2, 3, 4, and 5.

Extracted from https://techexplorations.com
Page 85

In addition to the data pins, we’ll need the reset pin, which
will be connected to Arduino digital pin 12. There is also the
enable pin, which we’ll connect to digital pin 11 on the
Arduino.

Then there’s a potentiometer, which is discussed in more
detail in the course. We’ll use the potentiometer to control the
contrast of the LCD and connect it so that 5-volt power is
applied to the leftmost pin. The other one on the other side will
connect to ground (GND). The middle pin will be connected
to the third from the left pin on the LCD module, which is V0.
V0 controls the voltage, which in turn controls the contrast of
the LCD.

Back on the LCD, on the left side as seen in the image above,
there’s the VSS pin, which we’ll simply connect to ground
(GND). The VDD pin power will be connected to 5 volts. The
read/write pin is permanently connected to ground.

Finally, on the other side, for the backlit, there is the A
(anode) pin, which we’ll connect to the breadboard’s 5-volt
power rail, and K (cathode) pin, which we’ll connect to the
breadboard’s ground power rail. The last step is to connect the
two power rails to the 5V and GND pins on the Arduino.

The wiring process is now finished.

The Sketch
The sketch is very simple and relies on the LiquidCrystal
library, which is already included in the Arduino IDE, so you
won’t have to install it separately. If you search in your library
manager, you will find the LiquidCrystal library as shown
below. You can access the library’s documentation by clicking
More info.

Extracted from https://techexplorations.com
Page 86

https://techexplorations.com/so/arduino_iot_environment_monitor/
https://www.arduino.cc/reference/en/libraries/liquidcrystal/

The LiquidCrystal library included in the Arduino IDE

See this sketch on GitHub.

I have simplified this sketch so that it only contains the
absolutely essential components to drive the screen, but you
can find the other available functions in the LiquidCrystal
documentation.

Extracted from https://techexplorations.com
Page 87

https://github.com/futureshocked/Arduino-environment-monitor/blob/main/02.50-2x16LCD_4bit/02.50-2x16LCD_4bit.ino
https://www.arduino.cc/reference/en/libraries/liquidcrystal/
https://www.arduino.cc/reference/en/libraries/liquidcrystal/

LiquidCrystal Functions

For example, I’ll be using the constructor LiquidCrystal() for
the liquid crystal, which is shown in this code block:

[tcb-script
src=”https://emgithub.com/embed-v2.js?target=https%3A%2F
%2Fgithub.com%2Ffutureshocked%2FArduino-environment-

Extracted from https://techexplorations.com
Page 88

monitor%2Fblob%2Fmain%2F02.50-2x16LCD_4bit%2F02.50-2
x16LCD_4bit.ino%23L59-L75&style=night-
owl&type=code&showBorder=on&showCopy=on”][/tcb-script]

The code block above also includes begin(), which I’ll use to
start the LCD, and print(), which I’ll use to print something out,
in this case a bit of text. I’ll also use setCursor() to move the
cursor to a specified position on the LCD.

You will get more information about these functions by
exploring the documentation in detail. To use setCursor(), for
instance, the parameters you would need to specify are the
column (col) and the row.

In this example, I specified column zero, which is the leftmost
column, and row one, which is the bottom row in the display
because we only have two rows. This will move the cursor to
the desired location. Following that, we’ll print some numbers
to represent the number of seconds since the Arduino started.

However, there are other functions that you can explore and
experiment with. For example, you can use scrollDisplayLeft()
to make text scroll to the left, scrollDisplayRight() to make it
scroll to the right, or, if your text is longer than 16 characters,
you can use autoscroll() to have it scroll automatically across
the screen.

You can either read up on the subject in the documentation or
head back to Arduino Step-by-Step: Getting Started to learn
more about this LCD, including information on how to use the
I2C adapter and communicate with the display using the I2C
protocol, which requires far fewer wires.

Extracted from https://techexplorations.com
Page 89

https://techexplorations.com/so/asbsgs2/

Sketch uploading and testing
I’ve assembled the hardware, and the sketch is ready to go, so
I’ll go ahead and upload it to the Arduino.

Uploading the sketch to the Arduino

So there you go!

hello, world! is displayed in the first row of the LCD

So, hello, world! is the fixed text displayed in the first row of

Extracted from https://techexplorations.com
Page 90

the LCD. In the second row I have a number that counts the
seconds since the Arduino began its most recent operation.

I can simply use the potentiometer to adjust the display’s
contrast, and we can see the effect on the image quality.

Low contrast

High contrast

And that’s all there is to the LCD. You now have everything
you need to use this liquid crystal display to monitor
environment data from the DHT11 sensor.

Extracted from https://techexplorations.com
Page 91

The liquid crystal display is ready to monitor environment data
from the DHT11 sensor

Done with the basics? Looking for more

Extracted from https://techexplorations.com
Page 92

advanced topics?
Arduino Step by Step Getting Serious is our comprehensive
Arduino course for people ready to go to the next level.

Learn about Wi-Fi, BLE and radio, motors (servo, DC and
stepper motors with various controllers), LCD, OLED and TFT
screens with buttons and touch interfaces, control large loads
like relays and lights, and much much MUCH more.

Learn more

Jump to another article

2×16 LCD – 4-bit parallel wiringLCD screen – I2C wire wiring
(soon)The Seven Segment Display (soon)128×64 OLED (soon)

Extracted from https://techexplorations.com
Page 93

https://techexplorations.com/so/asbsgsr1/
https://techexplorations.com/guides/arduino/displays/the-2x16-liquid-crystal-display-lcd

TFT LCD Screen
Arduino displays

TFT LCD Screen
This tutorial will show you how to use the TFT LCD screen
shield with an Arduino. I’ll go over how to install the necessary
library, how to connect the shield to the Arduino, and how to
upload example sketches. In addition, we will investigate the
functionality of the shield’s buttons, and I will suggest
exercises to help you better understand the shield’s
capabilities.

Extracted from https://techexplorations.com
Page 94

Introduction
The Thin-Film Transistor (TFT) liquid crystal display
screen belongs to the LCD family of displays. TFT screens are
composed of numerous pixels, which are tiny screen elements
that can be turned on and off to create visible markings. These
pixels are arranged in rows and columns.

Extracted from https://techexplorations.com
Page 95

A TFT computer screen can contain many millions of pixels. In
small consumer electronics, such as feature phones, there
could be several tens or hundreds of thousands of pixels.

If you use a magnifying glass on your computer screen, you
will see these tiny pixels. In the color example below, notice
that each pixel is actually made up of three: one for green, one
for blue, and one for red. The circuitry that controls the screen
decides which ones to turn on, how bright they should be, and
how long they should stay on. The end result is rich, colorful
graphics.

TFT LCD screens are more versatile than LCD screens because
there are no restrictions on the things you can display on

Extracted from https://techexplorations.com
Page 96

them. While a humble LCD screen can only display text, a TFT
screen allows you to draw anything at all.

In the example below, I am displaying a clock on my Arduino’s
TFT display shield. Later in this article, I will provide several
examples and show you how to display a clock on the TFT
display.

A clock image on a TFT display

Extracted from https://techexplorations.com
Page 97

TFT screens consist of many pixel elements that require
precise control. To achieve this, they come equipped with a
screen controller IC as part of the package. Your Arduino
communicates with this IC via a serial connection and makes
requests for shapes to be drawn on the screen.

However, communicating with the screen controller can be
complicated for anyone other than its designers. To simplify
this process, libraries have been created. These libraries allow
programmers to use simple instructions such as setCircle to
draw a circle or setStr to draw a string of text on the screen.

In this article, I am using the first shield we played with in the
course Arduino Step by Step Getting Started. A shield is a
printed circuit board (PCB) on which several components are
mounted, with pin connectors that match exactly those of the
Arduino’s headers. You simply plug the shield on top of the
Arduino, and you are good to go. No wiring or soldering is
required, which greatly minimizes the chance of making a
mistake or breaking something. This is a good way to
experiment with more complicated devices, such as Ethernet
adapters, SD card readers, motor controllers, etc.

Demo 1: quick start guide
To get started, you should download and install the library that
matches your screen. In my case, I purchased a screen from
eBay. After searching on Google, I found that the
manufacturer’s website had the best matching library.

Extracted from https://techexplorations.com
Page 98

2023 Note: the LCD shield shown may no longer be available
in the seller’s website

To make the library available to your Arduino project, and to
get access to the example sketches, follow the exact same
procedure as you did back in the servo lecture:

1. Download and extract the archive file.2. After extraction,
make sure that the folder name matches exactly the name of
the .h file inside it (the folder name should not include the “.h”
extension). For this library, the folder name should be
“ColorLCDShield”. Capitalization matters.

Extracted from https://techexplorations.com
Page 99

The folder of the ColorLCDShield library

3. Copy the folder to your Arduino’s library folder. If you’re not
sure where that is, check your Arduino IDE preferences.4.
Restart the Arduino IDE.

To view the ColorLCDScreen examples, click on File >
Examples > ColorLCDShield > Examples.

Next, plug the shield onto the Arduino. The headers on the
Arduino are designed in a way that makes it difficult to
connect the shield incorrectly without causing damage to its
pins. Play around with the shield and Arduino to ensure perfect
pin alignment, and then apply gentle force to securely connect
the two components.

Extracted from https://techexplorations.com
Page 100

Extracted from https://techexplorations.com
Page 101

Now that we have the shield installed, let’s upload one of the
example sketches. Plug the Arduino into your computer, open
the Arduino IDE, and navigate to File > Examples >
ColorLCDShield > Examples > ChronoLCD_Color.

Below is the sketch. I am showing you only the relevant part at
the moment.

[tcb-script

Extracted from https://techexplorations.com
Page 102

src=”https://emgithub.com/embed-v2.js?target=https%3A%2F
%2Fgithub.com%2Flina-
txplore%2Ftechexplorations%2Fblob%2Fmain%2FColorLCDSci
eld.ino&style=night-
owl&type=code&showFullPath=on&fetchFromJsDelivr=on”][/tc
b-script]

Currently, the most important consideration is to determine
the type of screen controller used by your screen.
Unfortunately, there are no external markings to assist you,
and often the manufacturer does not provide any
documentation. Therefore, determining the controller type is
usually a process of trial and error. The controller will be either
PHILLIPS or EPSON. In my case, it happens to be PHILLIPS.

Upload the sketch and check if it works. If it doesn’t, edit the
line to “EPSON” and see if it fixes the issue.

Wait a few seconds, and a clock should appear on the screen.

Extracted from https://techexplorations.com
Page 103

A clock image on a TFT display

There’s a lot happening in this sketch, so it’s better to leave it
alone for now. Instead, let’s look at something simpler.

Keep everything connected and load this sketch into the IDE:

[tcb-script
src=”https://emgithub.com/embed-v2.js?target=https%3A%2F

Extracted from https://techexplorations.com
Page 104

%2Fgithub.com%2Flina-
txplore%2Ftechexplorations%2Fblob%2Fmain%2FColorLCDShi
eldSketch.ino&style=night-
owl&type=code&showFullPath=on&fetchFromJsDelivr=on”][/tc
b-script]

When you upload it, you should see the following on the
screen:

The sketch starts by including the LCD library. Next, we define
three constants. A constant is simply a name given to a value,
so that when we need to use it later, we can refer to it by
name. Constants also make code more readable, especially
when the values assigned to them are “esoteric” data such as
hexadecimal or binary values.

In this sketch, we define the background color as follows:

Extracted from https://techexplorations.com
Page 105

#define BACKGROUND BLACK

Note that regular lines in the C programming language (which
the Arduino language is based on) do not require an ending
semicolon (;). In this code, BACKGROUND is a constant with a
value of BLACK.

Later in the sketch, there is a reference to this code:

Extracted from https://techexplorations.com
Page 106

lcd.clear(BACKGROUND);

Here, we are calling the clear function of the lcd object and
passing the BACKGROUND constant reference to it.
Alternatively, we could have written

lcd.clear(BLACK);

and the result would have been exactly the same. However,
consider this: the same code appears in several places within
this sketch. If we ever decide to change the background color
to pink, we will need to find all references to the clear function
and modify its attribute. With a constant reference as an
argument, we can simply go to the definition of this reference
at the top of the sketch and change BLACK to PINK there.
Problem solved!

The next line of interest is:

LCDShield lcd;

We declare an object reference of type LCDShield. We can
now use this reference, lcd, to call all of the functions that the
LCDShield object class offers.

In the setup() function, we configure digital pin 10 to provide
power to the screen’s backlight.

pinMode(10, OUTPUT);analogWrite(10, 1023);

We set the output to maximum brightness by writing a value
of 1023 to it. If you want your screen to be dimmer, simply
reduce the value written to pin 10.

Next, we inform the lcd object about the type of controller chip
it is communicating with:

lcd.init(PHILLIPS);

In my case, my screen uses a PHILLIPS controller. Keep in

Extracted from https://techexplorations.com
Page 107

mind that the alternative is an EPSON controller.

Next, we set the contrast as follows:

lcd.contrast(40);

Adjust this parameter to observe its effect on contrast.

Lastly, these two commands modify the displayed content:

lcd.clear(BACKGROUND);lcd.setStr(“STARTING”, 50, 0,
C_COLOR, BACKGROUND);

The first line makes everything black because at the beginning
of the sketch, we defined the constant BACKGROUND to be
black. Next, we write our first string using the setStr function,
which takes several parameters.

lcd.setStr([text to show], [start vertical pixel – y], [start
horizontal pixel – x], [text color], [background color]);

To write something at the top-left corner of the screen in red
with a green background, you would use the following code:

lcd.setStr(“hello”, 0, 0, RED, GREEN);

Simple, isn’t it?

Within the loop() function, we begin by defining an array that
contains three pieces of text:

char* Str4[] = {“arduino 1,”arduino 2,”arduino 3”};

Note that the definition is char* Str4[];. The char* indicates to
the Arduino that the variable that follows is a pointer
(indicated by the * symbol) to a location in its memory where a
sequence of characters (indicated by the char data type) are
stored. Since a string of text is made up of many characters,
we use char. The pointer is then given a name, Str4, and we
indicate that it is actually an array by using square brackets

Extracted from https://techexplorations.com
Page 108

after the name: [].

Finally, we initialize a pointer variable to an array of strings
using curly brackets, with the 3 strings inside: {“arduino 1”,
“arduino 2”, “arduino 3”}.

We iterate through this array using a for loop. For each item in
the array, we call the printString function, which is defined at
the end of this sketch.

The printString function requires three parameters: the string
to write on the screen, the horizontal (x) start position, and the
vertical (y) start position.

void printString(char* toPrint, int x, int y)

You may also remember that void means that a function does
not return a value. Instead, it performs an action (like writing
text on the screen) and then finishes execution.

In printString, there is a single call to the setStr function, just
like we saw in the setup() function earlier.

With this knowledge, you now know how to write text on the
screen.

Demo 2: Use the buttons
In this second demo, I will show you how to use the five
buttons integrated into the joystick that comes with the shield.

Here is the sketch:

[tcb-script
src=”https://emgithub.com/embed-v2.js?target=https%3A%2F
%2Fgithub.com%2Flina-
txplore%2Ftechexplorations%2Fblob%2Fmain%2Fdemo2sketc
h.ino&style=night-
owl&type=code&showFullPath=on&fetchFromJsDelivr=on”][/tc

Extracted from https://techexplorations.com
Page 109

b-script]

Here’s the first one:

int buttonPins[5] = {A0, A1, A2, A3, A4};

In this code snippet, we declare an array that will contain
references to the five Arduino analog pins that convey the
status of the five buttons provided by the LCD shield. These
buttons are integrated into a mini joystick soldered onto the
PCB, next to the screen. Rather than using individually
declared variables for the buttons, which we’ve done in
previous sketches, we bundle them in a single array. We then
cycle through this array to set them up or to read their values,
using and reusing the same code.

That is what we do in the very beginning of the setup()
function:

for (int i=0; i<5; i++)

{ pinMode(buttonPins[i], INPUT);

digitalWrite(buttonPins[i], HIGH); }

In this code, we cycle (loop) through the contents of an array
that contains the references to the button pins. First, we set
them as inputs, and then we turn on their pull-up resistor. This
pull-up resistor keeps the voltage of the switch high. When we
close the switch by pressing it, the voltage goes down, and the
Arduino, guided by the code in the takeInput() function,
detects the event.

In the loop() function, we constantly call the takeInput()
function and then call the printString function.

Since we have already covered the printString function in
Demo 1, let’s focus on takeInput() instead.

Here, we individually examine the state of each button. When

Extracted from https://techexplorations.com
Page 110

you push the joystick to the side, one of the buttons creates a
connection to Ground, so the digitalRead function returns
FALSE. Using the ! operator, we can invert this FALSE value
and get TRUE instead. With the if function, we examine this
value, and if it turns out to be TRUE, the Arduino will continue
within the block and execute any instructions in it, such as
clearing the screen and writing text on it.

So, now you know how to use the TFT LCD screen shield with
the Arduino. However, there is more to learn, and the best way
to do so is through exercises.

Exercise
Take a look at the examples included with the
ColorLCDShield library. Can you figure out how to draw a
line, a rectangle, and a circle?

Extracted from https://techexplorations.com
Page 111

Done with the basics? Looking for more
advanced topics?
Arduino Step by Step Getting Serious is our comprehensive
Arduino course for people ready to go to the next level.

Learn about Wi-Fi, BLE and radio, motors (servo, DC and
stepper motors with various controllers), LCD, OLED and TFT
screens with buttons and touch interfaces, control large loads
like relays and lights, and much much MUCH more.>

Learn more

Jump to another article

2×16 LCD – 4-bit parallel wiringLCD screen – I2C wire wiring
(soon)TFT LCD screenThe Seven Segment Display
(soon)128×64 OLED (soon)

Extracted from https://techexplorations.com
Page 112

https://techexplorations.com/so/asbsgsr1/
https://techexplorations.com/guides/arduino/displays/the-2x16-liquid-crystal-display-lcd
https://mpl-publisher.com/guides/arduino/displays/tft-lcd-screen

	0-1-unipolar-vs-bipolar-stepper-motors
	1-2-how-to-drive-a-dc-motor-without-a-motor-driver-module
	2-3-what-is-amp8220microsteppingamp8221
	3-4-direct-current-motor
	4-5-project-1-control-two-dc-motors-with-your-arduino-and-the-l298n-controller
	5-6-project-2-control-speed-and-direction-with-a-potentiometer
	6-7-project-3-dc-motor-control-with-a-distance-sensor
	7-8-project-1-control-a-servo-motor-with-a-potentiometer
	8-9-project-2-setup-and-play-with-varspeedservo
	9-the-216-liquid-crystal-display-lcd
	10-tft-lcd-screen
	Blank Page

