

Peter Dalmaris, PhD

Arduino
Introduction and basic
sensors

Get the most out of your
Arduino with articles
from the Tech
Explorations Blog

Extracted from https://techexplorations.com
Page 1

https://techexplorations.com

Welcome to this special collection of articles,
meticulously curated from the Tech Explorations blog
and guides. As a token of appreciation for joining our
email list, we offer these documents for you to
download at no cost. Our aim is to provide you with
valuable insights and knowledge in a convenient
format. You can read these PDFs on your device, or
print.

Please note that these PDFs are derived from our blog
posts and articles with limited editing. We prioritize
updating content and ensuring all links are functional,
striving to enhance quality continually. However, the
editing level does not match the comprehensive
standards applied to our Tech Explorations books and
courses.

We regularly update these documents to include the
latest content from our website, ensuring you have
access to fresh and relevant information.

Extracted from https://techexplorations.com
Page 2

License statement for the PDF documents on this
page

Permitted Use: This document is available for both educational
and commercial purposes, subject to the terms and conditions
outlined in this license statement.

Author and Ownership: The author of this work is Peter
Dalmaris, and the owner of the Intellectual Property is Tech
Explorations (https://techexplorations.com). All rights are
reserved.

Credit Requirement: Any use of this document, whether in part
or in full, for educational or commercial purposes, must include
clear and visible credit to Peter Dalmaris as the author and Tech
Explorations as the owner of the Intellectual Property. The credit
must be displayed in any copies, distributions, or derivative
works and must include a link to https://techexplorations.com.

Restrictions: This license does not grant permission to sell the
document or any of its parts without explicit written consent
from Peter Dalmaris and Tech Explorations. The document
must not be modified, altered, or used in a way that suggests
endorsement by the author or Tech Explorations without their
explicit written consent.

Liability: The document is provided "as is," without warranty of
any kind, express or implied. In no event shall the author or
Tech Explorations be liable for any claim, damages, or other
liability arising from the use of the document.

By using this document, you agree to abide by the terms of this
license. Failure to comply with these terms may result in legal
action and termination of the license granted herein.

Extracted from https://techexplorations.com
Page 3

#

1. What is the Arduino?
2. Common Arduino boards, problems and

opportunities
3. Types of hardware that you can connect to

an Arduino board
4. The Arduino programming environment
5. Arduino libraries and how to install them
6. The basics of Arduino programming:

program structure, functions, variables,
operators

7. The basics of Arduino programming: Loops,
conditions, objects, inputs & outputs

8. Introduction to Arduino sensors
9. Blinking LED
10. Fading LED
11. Button
12. Potentiometer
13. Infrared line sensor
14. Light sensor (analogue)
15. Impact sensor
16. Acceleration sensor
17. Ultrasonic distance sensor
18. PIR sensor
19. BME280
20. Measuring temperature and humidity

Extracted from https://techexplorations.com
Page 4

https://techexplorations.com

Copyright © 2024 by Peter Dalmaris, PhD

For more educational content, please go to
https://techexplorations.com

Tech Explorations creates educational products for
students and hobbyists of electronics who rather utilize
their time making awesome gadgets instead of
searching endlessly through blog posts and YouTube
videos. We deliver high-quality instructional videos
and books through our online learning platform.

Extracted from https://techexplorations.com
Page 5

https://techexplorations.com
https://techexplorations.com
https://techexplorations.com

Lesson 1: What is the Arduino?
Introduction to the Arduino guide series

What is the Arduino?
This is the first article of the “Getting Started” series, where
you will learn about the Arduino history.

This is the first article of the “Getting Started” series, where
you will learn about the Arduino history. It’s even become a
movie (well, ok, a documentary)!

Let’s begin…
I’m Peter, Chief Tech Explorer at Tech Explorations. I hope that
this course will benefit you in two ways:

First, help you get started on your Arduino adventures, and
over time assist you in your study of electronics.

Second, to give you a taste of my content and teaching style,
with minimal effort required on your part.

And today, you will start with the short history and context of
the technology education phenomenon, the Arduino.

But first, I want to dispel a myth. The myth is that, to learn
electronics and to become a Maker, you need to be a
naturally-born tech wizard.

This is important because a common complaint I hear from my
students is that “I am not good with technology” or “my mind
can’t think like a computer.”

Unless you can deal with inner inhibitions such as these, it will
be very hard, almost impossible, to become good at anything

Extracted from https://techexplorations.com
Page 6

https://www.imdb.com/title/tt1869268/
https://techexplorations.com

that matters. There will always be an excuse.

Lack of learning inhibitions is one significant reason why
children can learn so fast. There are other reasons, of course,
but children, in general, haven’t had time to develop defenses
against learning. Everything is new, and as long as it doesn’t
look scary, as long as it’s inherently interesting, children will
go for it and learn.

What I have seen in my work with thousands of students, in
my University career and at Tech Explorations, is that a
learner’s learning capacity is dampened primarily by negative
prior experiences (like a bad experience in a classroom) or
cultural accepted (but unexamined) norms (like “girls are not
as good as boys in robotics”).

How can you deal with something like this? How can you start
to remove such inhibitions?

In my experience, you can do this in three steps:

1. Accept that these inhibitors exist (they do).
2. Accept that your capacity to learn is intact (it is).
3. Find convincing proof that counters each inhibitor

(it exists).

I have been fortunate enough to have known some amazing
people over the years:

A retired 65-yo ex-police officer who had never programmed in
his life until (in retirement), he decided to challenge himself
with an Arduino. Now, he makes his own 3D printer and other
gadgets.

A brilliant engineer with a severe mobility disability, who made
her life’s mission to create robotic technologies to assist
people with mobility difficulties.

Extracted from https://techexplorations.com
Page 7

https://techexplorations.com

A pastor-teacher who reinvented himself as a STEM mentor
powered by the Arduino because he believed that quality
technology education allows his students to lead a fulfilling
life.

These examples, and many more, show that learning is
possible, as long as it is desired, and the right conditions exist.
Each of the people in the examples had “valid” reasons to not
learn. The ex-police officer could have considered his lack of
prior programming experience and age to choose golf instead
of electronics. The engineer with the mobility disability could
have chosen a life dependent on support services instead of
pursuing her studies despite her body’s deteriorating
condition. And the pastor-teacher could have decided that
STEM education is reserved for specialists.

At Tech Explorations, our mission is to help you create the
conditions that can help you learn how to use the Arduino,
regardless of where you are starting. Our courses provide a
structured and distraction-free environment that can help you
to focus on the task.

What you have to do is to make the decision that you want to
learn, accept that you can learn, and create an environment
that is right for you to do so. Our courses may (but don’t have
to) be part of your learning environment.

Ok, now that we have the mindset sorted, let’s get into the
Arduino.

What is the Arduino?
Let’s start at the very beginning. What is the Arduino, and
where did it begin?

The Arduino is not a single thing. It is a prototyping platform.
The platform is a collection of hardware, software, workflows
(ways of doing things), and support networks (places where
you can find help and information) designed to help people

Extracted from https://techexplorations.com
Page 8

https://techexplorations.com

create prototypes (and often, finished products) very quickly.

All of these components are open source, meaning that their
designs and source code is available for anyone to copy and
use.

At the center of the Arduino platform is a microcontroller chip.

A microcontroller is like a processor in your computer, except
that it is very cheap, slower, and it has many connectors for
peripherals like sensors and switches.

As a result, microcontrollers are great for sensing and
controlling applications, and you find them everywhere: in
your toaster, fridge, alarm system, in your car, printer, and
paper shredder.

An early Arduino. It uses the RS232 serial interface instead of
USB, an ATMEGA8, and male pin headers instead of female.
The large black chip at the bottom right of the board is the
microcontroller.

The Arduino was created by educators and students at the

Extracted from https://techexplorations.com
Page 9

https://www.arduino.cc/en/Main/FAQ
https://techexplorations.com

Interaction Design Institute Ivrea in Ivrea, Italy. Massimo Banzi,
one of the founders, was one of the instructors at Ivrea. At the
time, students were using expensive hardware to build their
micro-controller based creations.

The Ivrea students and their instructors decided to build their
microcontroller platform by using a popular “AVR”
microcontroller from Atmega, and a light version of the Wiring
development platform written by (then student) Hernando
Barragan.

Wiring influenced the development of what we now call the
“Arduino Language.”

The Arduino Language is, in fact, a simplified version of the
C++ language. C++ is a general-purpose programming
language used in the world’s most critical infrastructure,
virtually all operating systems, desktop, and smartphone
applications. Learning a bit of C++ is definitely not a waste of
time.

The Arduino Integrated Development Environment (IDE) is also
inherited from Wiring.

What the Arduino borrowed from Wiring made the platform
easy to use so that people who are not engineers can build
sophisticated microcontroller-based gadgets.

Tomorrow, we’ll be delving into useful resources for Arduino
makers. These are places where you can look for inspiration
and help as you get deeper into your Arduino prototyping
adventures.

Extracted from https://techexplorations.com
Page 10

https://en.wikipedia.org/wiki/Interaction_Design_Institute_Ivrea
https://en.wikipedia.org/wiki/BASIC_Stamp
https://en.wikipedia.org/wiki/Wiring_(development_platform)
https://en.wikipedia.org/wiki/Wiring_(development_platform)
https://en.wikipedia.org/wiki/C%2B%2B
https://wp.techexplorations.com/guides/arduino/begin/les2/
https://techexplorations.com

New to the Arduino?
Arduino Step by Step Getting Started is our most popular
course for beginners.

This course is packed with high-quality video, mini-projects,
and everything you need to learn Arduino from the ground up.
We’ll help you get started and at every step with top-notch
instruction and our super-helpful course discussion space.

Extracted from https://techexplorations.com
Page 11

https://wp.techexplorations.com/wp-content/uploads/2020/01/DSC_0114-1000h-square.jpg
https://mpl-publisher.com/guides/arduino/begin/lss1/
https://techexplorations.com

Lesson 2: Common Arduino boards,
problems and opportunities
Introduction to the Arduino Guide series

Common Arduino
boards, problems and
opportunities
In this article, we take a look at some of the many kinds of
Arduino boards that you can find in the market today.

In the first lesson, you learned about the early days of the
Arduino prototyping platform. I’d like to take this story a bit
further and have a look at some of the many kinds of Arduino
boards that you can find in the market today.

First: projects, problems, and
opportunities
Before looking at the Arduino boards that make up the core of
the Arduino ecosystem, I’d like to suggest that you look at the
Arduino as a problem-solving tool, not only a learning or
electronics tool.

The Arduino is truly a blank canvas on which you can design
solutions to problems.

We often call these problems “projects.” Some are big, some
are small, but each problem is a project.

And each project (or problem) is an opportunity.

Extracted from https://techexplorations.com
Page 12

https://techexplorations.com/guides/arduino/begin/lss1/
https://techexplorations.com

An opportunity to learn something new
An opportunity to re-examine our
assumptions
An opportunity to try a different way
An opportunity to create something new

These opportunities come in many contexts. Education,
technology, business, social, personal.

With the Arduino, you can capture these opportunities.

When you find a problem, in your mind, see “opportunity.”

Then, ask the question: “What kind of opportunity is this
problem presenting me?”

Identify the opportunity. Consider its value. And if you decide
that it is valuable, start the journey of capturing the hidden
value.

This is the journey of solving a problem.

As you learn how to use the Arduino, you will encounter many
problems. A sketch will not work as you expect it. A motor
might spin in the opposite direction you thought it would. A
sensor might give weird readings. It’s part of building stuff.

In reality, these are opportunities after opportunities, to learn
things you didn’t know, to make things you haven’t made
before, to think in a new way.

Often, you will become tired of this. You will be inclined to give
up.

That’s when the word “opportunity” must light up your mind.
The hardest things are more valuable, and capturing this value
only comes at an expense: perseverance.

You can’t capture the value without experiencing the

Extracted from https://techexplorations.com
Page 13

https://techexplorations.com

hardships of the journey. You will have many such journeys
with the Arduino, and each one will make you a little richer.

So, where were we?

Aha, the Arduino boards…

Wiring
Before Arduino became… Arduino, there was the Wiring Board.

The Wiring Board was designed by Hernando Barragán, then a
student at Interaction Design Institute Ivrea (IDII). This board
looked a bit like what a modern Arduino looks like. Massimo
Banzi and Casey Reas were Hernando’s thesis supervisors. You
can learn more about this phase of the Arduino history in
Hernando’s Untold Story article.

Hernando Barragán’s Wiring Board, the Arduino’s predecessor
(original image available at https://arduinohistory.github.io/)

Extracted from https://techexplorations.com
Page 14

https://arduinohistory.github.io/
https://arduinohistory.github.io/
https://techexplorations.com

The Wiring Board contains the basic features so common in
modern Arduino boards: a USB connection for uploading
programs and for communications, an Atmega microcontroller,
pins arranged along the edges, an onboard LED that you can
control programmatically, and LED that light up when a
program is transferred via the USB port.

This was in 2004.

Arduino
A year later, Massimo Banzi and David Mellis forked (a
programming term that describes a copy of an original work)
Wiring, and created the Arduino. The created the first Arduino
prototype, pictured below:

Allegedly, the first Arduino prototype (original image available
at https://arduinohistory.github.io/)

And shortly after, the second prototype:

Extracted from https://techexplorations.com
Page 15

https://arduinohistory.github.io/
https://techexplorations.com

The second Arduino prototype (original image available at
https://arduinohistory.github.io/)

The second Arduino prototype is what we recognize today as
the Arduino Uno, with several improvements as a faster
microcontroller and better positioning of components, like the
reset button.

Fast forward to 2019
Fast-forward to today, and in 2019 there are around 15 active
and many more retired official Arduinos.

Because Arduino is open-source hardware, there are many
more Arduino compatible boards, made by countless
manufacturers. You can make your own, if you wish.

With so many Arduino boards out there, this is a topic that
often confuses beginners.

In the remainder of this article, I’d like to help clear the

Extracted from https://techexplorations.com
Page 16

https://arduinohistory.github.io/
https://techexplorations.com

confusion.

As I mentioned already, there are dozens of boards designed
by Arduino and various manufacturers. Some, but not all of
these manufacturers, design their boards with care and
attention to the official specifications to ensure that the boards
they produce are fully compatible with the official Arduino
boards.

The boards produced by these manufacturers are often labeled
“100% compatible.” They are not official Arduinos (that
means, they are not made by Arduino, the company), but they
work exactly like an official Arduino.

There are also boards that are not fully Arduino compatible
because their designer decided to make hardware changes
that affect the way such board works. These boards are often
called “clones,” and are usually much cheaper than an official
Arduino. A common example is such boards that replace the
USB components of the official board with a more affordable
version. To use such Arduino on your computer requires you to
install additional USB drivers, making this a wrong choice for
beginners. The design of these boards is driven by price, so
cheaper components are used all around; cheaper headers
(where you connect the jumper wires), cheaper USB
connectors, cheaper passive components (like capacitors and
the voltage regulator). These Arduino clones cost a fraction of
the cost of an official Arduino.

It is worth investing in official Arduino boards even if they are
slightly more expensive because they will work better so that
you will not have to spend hours figuring out problems with
the board instead of building your gadget.

Arduino Uno
If you are a beginner in Arduino and electronics, I recommend
getting the Arduino Uno R3; this is the classic Arduino board. It
is hard to destroy by miswiring (I have tried!), has tons of high-

Extracted from https://techexplorations.com
Page 17

https://techexplorations.com

quality documentation, example sketches, and libraries while
still surprisingly capable. It is relatively easy to expand as your
projects grow.

This is the official Arduino Uno. The best board for the
beginner and beyond (image taken from arduino.cc).

Arduino Pro Mini
If you are looking to build a project that requires a small size,
you can go for one of the small footprint Arduinos, like the Pro
Mini or the Micro (designed by SparkFun). These boards
contain the bare-essential hardware. The Pro Mini is a personal
favorite. You can find it on eBay for around $5 (a bit more than
the price of a single ATmega328P microcontroller), and it
contains all of the functionality of the Uno except for the USB.
It fits in the smallest project box, and I often attach it to
custom-designed motherboards.

Extracted from https://techexplorations.com
Page 18

https://techexplorations.com

The tiny Arduino Pro Mini (image taken from arduino.cc)

The two example boards, the Uno and the Pro Mini, share the
same basic architecture and are powered by the same
microcontroller. This means that your circuits and sketches
work the same way on these boards.

Arduino Mega
There are also Arduinos based on more capable
microcontrollers, like the Mega, or even microprocessors
running Linux, like the Arduino Yún rev 2.

The Arduino Mega 2560 is a super-sized Arduino Uno with a
faster microcontroller (the ATmega2560) and many more
input/output pins. This board is perfect for projects with a lot of
buttons, motors, sensors, and, really, a lot of everything.

Extracted from https://techexplorations.com
Page 19

https://techexplorations.com

The Arduino Mega 2560 (image taken from arduino.cc)

Arduino Yún
The Arduino Yún rev 2, is essentially a computer combined
with an Arduino. It runs a version of Linux, has built-in Wifi
capability, and is made for Internet-of-Things applications.

Extracted from https://techexplorations.com
Page 20

https://techexplorations.com

The Arduino Yún, geared for the Internet-of-Things applications
(image taken from arduino.cc)

Arduino Gemma and LilyPad
Worth mentioning are also the various wearable Arduinos. If
you are interested in making electronics that you can embed
in clothing, then you can look at something like the super-tiny
Arduinos Gemma or LilyPad (designed and sold by Adafruit).
These are small, battery-ready, low power Arduinos, and
circular so that they don’t catch onto fabrics.

Extracted from https://techexplorations.com
Page 21

https://techexplorations.com

The super-tiny Arduino Gemma

So, which Arduino do I recommend for someone starting now?

Arduino is open-source, which means that its specifications are
published so that anyone can create their own compatible and
custom design.

It is easy to get lost in this variety of alternatives, but my
advice is to start with the classic Arduino Uno.

In the next lesson, you will learn about the important hardware
features of the Arduino Uno and the kinds of hardware that
you can connect to it.

Extracted from https://techexplorations.com
Page 22

https://mpl-publisher.com/guides/arduino/begin/ln3/
https://techexplorations.com

New to the Arduino?
Arduino Step by Step Getting Started is our most popular
course for beginners.

This course is packed with high-quality video, mini-projects,
and everything you need to learn Arduino from the ground up.
We’ll help you get started and at every step with top-notch
instruction and our super-helpful course discussion space.

Extracted from https://techexplorations.com
Page 23

https://wp.techexplorations.com/wp-content/uploads/2020/01/DSC_0114-1000h-square.jpg
https://mpl-publisher.com/guides/arduino/begin/lss1/
https://techexplorations.com

Lesson 3: Types of hardware that you can
connect to an Arduino board
INTRODUCTION TO THE ARDUINO GUIDE SERIES

Types of hardware that
you can connect to an
Arduino board
In this lesson, we’re going to dive into the types of hardware
that you can connect to an Arduino board.

In the previous lesson, you learned about the most common
Arduino boards, and some of the history of the development of
the first few boards.

In this lesson, we’re going to dive into the types of hardware
that you can connect to an Arduino board.

The Arduino can’t do much on its own. Its purpose is to
communicate with external hardware and to control.

There are many different kinds of hardware that you can
connect to the Arduino. And there are a lot of them! In this
section, I will discuss the kind of components that you can
connect to an Arduino, and give some examples for each.

First, a quick look at the hardware included on the Arduino Uno
board. The Arduino Uno has features that are shared with
other Arduino boards. I’m marking the most important ones in
this image:

Extracted from https://techexplorations.com
Page 24

https://techexplorations.com/guides/arduino/begin/les2/
https://techexplorations.com

The most important features of the Arduino Uno board

Here are the details:

USB: The port used to transfer data and
programs to the Arduino. It is also used to
power the Arduino.
DC power: If you don’t connect the Arduino
to the computer via the USB, you can power
the Arduino by connecting a power supply or
a battery pack to the DC power port.
Reset: Press this button to make your
program restart.
Headers. There are four headers that expose
pins. You can connect your peripherals to
the Arduino using those pins.
ATMEGA328P: This is the “brain” of the

Extracted from https://techexplorations.com
Page 25

https://techexplorations.com

Arduino Uno, the microcontroller. It sits on a
socket, so if needed, you can swap it for a
new one.

You will learn more details about the Arduino later. For now,
you know enough to continue in this lesson and learn about
the basic kinds of hardware that you can connect to the
Arduino.

A simple mind experiment
As you read the rest of this lesson, do not be discouraged if
the details seem hard to grasp. Unless you already have some
knowledge of Ethernet controllers, transistors, and the like,
you will need to take your time and learn all this, one step at a
time.

Before you continue, do this mind experiment. Imagine
yourself six months from now. You have completed this
course, and you have completed the ‘Arduino Step by Step
Getting Started’ course. Perhaps you are a quarter into the
‘Arduino Step by Step Getting Serious’ course.

You have already created Arduino gadgets that can
communicate with the Internet; other gadgets that display
sensor data on an LCD screen. One of your gadgets can turn
the fan on when it’s hot.

Your future self knows about shields, transistors, wifi modules,
and LCD modules. You know how to write sketches to control
all that, and to integrate them in a single working circuit. You
feel confident that you can learn any new technology, and this
confidence stems from your recent achievements.

Not only that, but your collection of boards and components
has grown. Thanks to eBay, Aliexpress, Amazon, and many
other international retailers and global trade, these
components are really cheap to buy. You don’t need to take

Extracted from https://techexplorations.com
Page 26

https://techexplorations.com

apart and reuse components constantly. Experiments never
fail, and even if you burn out an LED, you can easily replace it
and continue with the next experiment.

Now, come back to the present.

You are just starting out.

Don’t lose sight of your future self that you want to be.

Commit to the journey to take you there.

Shields Up!

Shields
An Arduino shield is a printed circuit board with various
components already installed on it, ready to perform a
particular function. They hook onto an Arduino without any
wiring or soldering. Just align the shield with the Arduino, and
apply a bit of pressure to secure them.

Most shields are built to work with the Arduino Uno, and as a
result, virtually all other full-sized Arduinos have an Uno-
compatible header configuration.

Extracted from https://techexplorations.com
Page 27

https://techexplorations.com

An example Arduino Uno shield. It fits perfectly in the Arduino
Uno headers and adds capabilities without any jumper wires.

The Arduino Ethernet shield (top) is about to connect to an
Arduino Uno (bottom). To make the connection, align the pins
of the shield with the headers in the Uno and gently press
down.

There are shields for almost anything: Ethernet and Wifi
networking, Bluetooth, GSM cellular networking, motor control,
RFID, audio, SD Card memory, GPS, data logging, sensors,
color LCD screens, and more.

There are also shields for prototyping, with which you can
make permanent any circuits you created on a breadboard
and are too good to destroy.

Extracted from https://techexplorations.com
Page 28

https://techexplorations.com

A prototyping shield has enough space and pads where you
can attach your own components.

A prototyping shield like this one from Adafruit makes it easy
to preserve your best circuit designs.

Shields are great for beginners because they require no tools
to add components to an Arduino.

Breakouts
Breakouts are typically small circuit boards built around an
integrated circuit that provides specific functionality. The
board contains supporting circuitry, like a subsystem for
supplying power, LEDs for indicating status, resistors and
capacitors for regulating signals, and pads or pins for
connecting the breakout to other components or an Arduino.

In many cases, the same functionality is offered in a shield or a
breakout format. For example, you can get the same GPS as a
breakout or as a shield. In such cases, the difference is size.
The breakout is smaller; it can work with boards other than the

Extracted from https://techexplorations.com
Page 29

https://techexplorations.com

Arduino Uno or Arduinos with the Uno headers.

The Adafruit GPS Breakout. It comes with a header and a
battery holder that you must solder on (image courtesy of
Adafruit).

A breakout has to be wired to an Arduino using jumper wires
and often a breadboard.

Extracted from https://techexplorations.com
Page 30

https://techexplorations.com

You must connect the breakout to the Arduino using wires and
a breadboard (image courtesy of Adafruit).

Sometimes, apart from using jumper wires to connect the
breakout to the Arduino, you may also need to do a bit of
soldering, like I had to do for the GPS Breakout. Here’s the
quick version of how this soldering job went (you can see me
soldering the Adafruit GPS breakout in the fast-motion video
below).

The beautiful thing about breakouts is that unlike shields,
which only work with the Arduino, a breakout can be
connected to anything, including the boards that you will
design your self down the track. Therefore, apart from being
used for learning, breakouts can be embedded into a final
product.

Components
While breakouts give you easy access to components by
putting them on a printed circuit board with their supporting

Extracted from https://techexplorations.com
Page 31

https://techexplorations.com

electronics, you will eventually need access to the individual
component so that you can fully customize the way it works in
your circuit.

For example, if you would like to have a keypad so that the
user can type letters and numbers as input to a gadget you
are making, you could use a soft membrane keypad. This
keypad is available as a component. To use it correctly, you
will need to add several wires and resistors.

Extracted from https://techexplorations.com
Page 32

https://techexplorations.com

Using a 4×4 keypad requires external wires, diodes, and
resistors; this is more work (compared to a shield), but often
the flexibility you get in return is worth the effort.

Another example of an individual component is a character
LCD screen. To make this one work properly, you have to
provide a lot of wires and a potentiometer.

An LCD screen on a breadboard. A lot of wires are used to

Extracted from https://techexplorations.com
Page 33

https://techexplorations.com

connect it to an Arduino Uno, on a breadboard with a
potentiometer.

A shift register IC makes it possible to control many digital
components with a single pin of your Arduino.

As you become more skilled in Arduino prototyping, you will
find yourself using increasingly more components like these.
Almost any functionality you can imagine is available as a
component. Sensors of all kinds, motion, user input, light,
power, communications, storage, multiplexing and port
multipliers, binary logic integrated circuits, amplifier circuits,
even thumbprint scanners can be connected to an Arduino as
components.

Discrete components
At the bottom of the scale, regarding size and complexity, we
have a wide range of discrete components. Things like
resistors, capacitors, transistors, LEDs, relays, coils, etc. fall
into this category. They are the “brick and mortar” of
electronics. Most of these discrete components are very simple
but very important.

For example, a resistor limits the amount of current that can

Extracted from https://techexplorations.com
Page 34

https://techexplorations.com

flow through a wire. A capacitor can be used as a small store
of energy or as a filter. A diode limits the flow of current to a
single direction. An LED is a diode that emits light. A transistor
can be used as a switch or an amplifier. A relay can be used to
switch on and off large loads, like an electric motor. A coil can
also be used as a filter or as part of a sensor, among other
things. There are many more discrete components that the
examples mentioned.

A resistor limits the amount of current that flows through a
wire.

Extracted from https://techexplorations.com
Page 35

https://techexplorations.com

A capacitor stores energy, or works as a filter.

A diode limits current to flow towards one direction only.

An LED is a diode that emits light.

Extracted from https://techexplorations.com
Page 36

https://techexplorations.com

A transistor can be used as a switch or an amplifier.

Extracted from https://techexplorations.com
Page 37

https://techexplorations.com

A relay is used to drive large loads from your Arduino.

Extracted from https://techexplorations.com
Page 38

https://techexplorations.com

A coil can be used as a filter.

As you are starting your electronics adventures, no matter
which Arduino you choose, you will need to stock up on these
components as you will need to use them in virtually
everything you make. Luckily, they are very cheap, and it is
worth buying them in bulk so that you always have some when
you need them.

Now that you have a better understanding of the type of
hardware that you can connect to an Arduino board, you are
ready for the next installment of this short course. In the next
lesson, you will learn how to install the Arduino programming
environment on your computer and its basic features.

Extracted from https://techexplorations.com
Page 39

https://techexplorations.com

New to the Arduino?
Arduino Step by Step Getting Started is our most popular
course for beginners.

This course is packed with high-quality video, mini-projects,
and everything you need to learn Arduino from the ground up.
We’ll help you get started and at every step with top-notch
instruction and our super-helpful course discussion space.

Extracted from https://techexplorations.com
Page 40

https://wp.techexplorations.com/wp-content/uploads/2020/01/DSC_0114-1000h-square.jpg
https://mpl-publisher.com/so/asbsgs2/
https://mpl-publisher.com/guides/arduino/begin/lss1/
https://techexplorations.com

Lesson 4: The Arduino programming
environment
Introduction to the Arduino guide series

The Arduino
programming
environment
In Lesson 4 of our introductory course on the Arduino, you will
learn about what it is like to program the Arduino. You will
install the Arduino IDE, and use it for the very first time to
upload your first example sketch.

In Lesson 4 of our introductory course on the Arduino, you will
learn about what it is like to program the Arduino. You will
install the Arduino IDE, and use it for the very first time to
upload your first example sketch.

You will need your Arduino Uno and a USB cable.

I recommend that you clear the next 15 minutes in your
schedule so that you can concentrate on the activities of this
lesson. Switch your mobile and computer to “do not disturb”
mode.

You don’t need any prior knowledge or skill in electronics. You
don’t need any prior knowledge or skill in programming.

By the time you finish this lesson, you will have a
programming environment installed on your computer, and an
Arduino with a blinking LED.

And that’s your first practical step in learning the Arduino.

Extracted from https://techexplorations.com
Page 41

https://techexplorations.com

Right now.

Let’s do it!

The Arduino quick setup guide
To program the Arduino, you need to install the Arduino
Integrated Development Environment (IDE) on your computer.

To install the IDE on your computer, you must first download it
from arduino.cc. Then, you will follow the installation process
that depends on the operating system that is running on your
computer.

The only requirement is that you have a Java runtime
environment already installed. This is usually not a problem on
Windows and Mac computers.

Download the software
To download the IDE for your operating system, go to
https://www.arduino.cc/en/Main/Software.

Extracted from https://techexplorations.com
Page 42

https://www.arduino.cc/en/Main/Software
https://techexplorations.com

The Arduino IDE download page. Pick the installer to match
your computer operating system (download links are in the
orange rectangle).

In the download page, scroll down to find the latest available
version, and click on the download file link that matches your
operating system. For Windows, I prefer the ZIP file option.

Allow some time for the download to complete. Then, look for
the installation file in your download folder, “~/Downloads” for
the Mac and “Downloads” on Windows.

Extracted from https://techexplorations.com
Page 43

https://techexplorations.com

The IDE installer on the Mac

The IDE installer on Windows 10

In the remainder of this lesson, I show you the installation
process for Mac OS and Windows 10.

Extracted from https://techexplorations.com
Page 44

https://techexplorations.com

How to install the Arduino IDE on Mac OS X
To do the installation on the Mac, double-click on the
installation archive file to have it extracted. The picture below
may be different from what you will see, depending on which
program you use for extracting ZIP files.

Extracting the IDE installer on the Mac. The software version in
this image is 1.6.5, but the process is exactly the same for
newer versions.

When the extraction completes, you will have a new file, which
is the actual IDE. All you have to do then is to move it into your
Applications folder.

Extracted from https://techexplorations.com
Page 45

https://techexplorations.com

The IDE application is now in my Downloads folder.

… And finish the process by copying the file into your
Applications folder.

To start the IDE, double-click on the Arduino icon inside the
Applications folder.

Extracted from https://techexplorations.com
Page 46

https://techexplorations.com

How to install the Arduino IDE on
Windows
On Windows, start by double-clicking on the installation file. Be
ready for a long series of confirmation dialogue boxes. In all of
them, it is safe to accept the defaults.

A pop-up will ask you for permission to run the program, click
on Yes to continue:

Yes! It is safe to continue!

Agree to the license agreement:

Extracted from https://techexplorations.com
Page 47

https://techexplorations.com

Yes! I agree…

Accept the checked components:

Yes! All these components are used.

Accept the default installation location, and the file copy will

Extracted from https://techexplorations.com
Page 48

https://techexplorations.com

begin:

Yes! This location looks fine.

The installer will start copying files to the installation location:

Copying files to the destination.

Extracted from https://techexplorations.com
Page 49

https://techexplorations.com

You may be asked to install device drivers a couple of times.
Click on “Install” to accept the installation.

Yes, these USB device drivers are also useful.

When the file copy process finishes, click “Close” to close the
installer:

Extracted from https://techexplorations.com
Page 50

https://techexplorations.com

When the file copy process finishes, click “Close” to close the
installer:

You can start the Arduino IDE, just like any other Windows
program. If you accepted the default installation options, then
you should be able to find the Arduino shortcut on the desktop
(see screenshot example below).

Double-click on the shortcut to start the IDE.

The Arduino IDE shortcut on the desktop

An alternative way to start the IDE is to search for it. In
Windows 10, you will find the search field in the bottom left
corner of the desktop. Type “Arduino” in the field, and you will
see the “Arduino” application appearing at the top of the
search results (see the example screenshot below. Just click on
the application name to start the IDE.

Extracted from https://techexplorations.com
Page 51

https://techexplorations.com

You can start the Arduino IDE by searching for it.

Awesome. Now that you have installed the Arduino IDE, you
can use it to upload your first sketch.

Let’s try it out.

Extracted from https://techexplorations.com
Page 52

https://techexplorations.com

Upload your first sketch
Start the Arduino IDE. A few seconds later, you should see a
new IDE window with a blank sketch. It will look like the
example below (Windows 10 and Mac OS):

A blank Arduino sketch (Windows 10)

Extracted from https://techexplorations.com
Page 53

https://techexplorations.com

A blank Arduino sketch (Mac OS)

Continue to connect your Arduino to your computer via the
USB cable. When connected, the power LED on the Arduino
should light up.

Extracted from https://techexplorations.com
Page 54

https://techexplorations.com

The Arduino is connected to your computer via a USB cable,
and the power LED is lit

Go back to the Arduino IDE and load one of the examples. On
both Windows 10 and Mac OS, you can do this by clicking on
File, Examples, 01.Basics, Blink.

Extracted from https://techexplorations.com
Page 55

https://techexplorations.com

Load the Blink sketch on Windows 10

The Blink sketch will appear. Don’t worry about what is in it,
since you will learn about programming (sketching) in the next
two lessons. For now, it’s enough to know that this little
program will make the LED marked “L” on the Arduino Uno to
blink once every second. This LED is right next to the pin
marked 13.

The Blink sketch

Before you can upload this sketch to your Arduino, there are
two things you should check and set. The Arduino board
model, and the port to which it is connected. Both are usually
automatically and correctly set by the Arduino IDE, but I have
a habit of checking before I upload the sketches, that has
saved me a huge amount of time over the years.

Extracted from https://techexplorations.com
Page 56

https://techexplorations.com

To check for the correct board model, click on Tools, Board,
and Arduino/Genuino Uno.

Select the Arduino Uno Board (Mac OS)

Select the Arduino Uno Board (Windows 10)

Next, check the port. Click on Tools, Port,
/dev/cu/usbmodem7101 (Arduino/Genuino Uno) or COM3. The
port names may vary, but the name of the board should also
appear on the menu to help you identify the correct one.

Extracted from https://techexplorations.com
Page 57

https://techexplorations.com

Select the correct port (Mac OS)

Select the correct port (Windows 10)

With the settings verified, go ahead to upload. Click on the
icon with the right arrow to start the upload. When you click on
this button, the button will turn yellow, and the IDE will first
compile and then upload the sketch to your connected
Arduino. This process takes around 10 seconds.

Extracted from https://techexplorations.com
Page 58

https://techexplorations.com

Uploading a sketch (Mac OS)

Extracted from https://techexplorations.com
Page 59

https://techexplorations.com

Uploading a sketch (Windows 10)

When the process finishes, have a look at the LED marked “L,”
next to pin 13. Can you verify that it is blinking once per
second? It’s the sketch you just uploaded that made this
happen.

And this is how easy it is. But it’s only the start.

In the next lesson, you’ll take an in-depth look at Arduino
libraries, which help make programming a breeze.

When you are ready, continue with the next lesson. There, you
will learn about one of Arduino’s superpowers: libraries.

Extracted from https://techexplorations.com
Page 60

https://techexplorations.com/guides/arduino/begin/lsn5/
https://techexplorations.com

New to the Arduino?
Arduino Step by Step Getting Started is our most popular
course for beginners.

This course is packed with high-quality video, mini-projects,
and everything you need to learn Arduino from the ground up.
We’ll help you get started and at every step with top-notch
instruction and our super-helpful course discussion space.

Extracted from https://techexplorations.com
Page 61

https://wp.techexplorations.com/wp-content/uploads/2020/01/DSC_0114-1000h-square.jpg
https://mpl-publisher.com/guides/arduino/begin/lss1/
https://techexplorations.com

Lesson 5: Arduino libraries and how to
install them
Introduction to the Arduino guide serieS

Arduino libraries and
how to install them
In Lesson 5 of the introductory mini-course on the Arduino, you
will learn about Arduino libraries.

A library is a software code that performs a particular function.
It is distributed by its author so that other people that need
this function can include it in their applications without having
to write the equivalent code again.

In Lesson 5 of the introductory mini-course on the Arduino, you
will learn about Arduino libraries.

A library is a software code that performs a particular function.
It is distributed by its author so that other people that need
this function can include it in their applications without having
to write the equivalent code again.

Libraries can speed up and simplify prototyping significantly.
When you install the Arduino programming environment on
your computer, you also install a lot of frequently used
libraries that you can use right away.

If there is a library that you need but is not included with the
IDE, you can install it. We’ll look at an example shortly.

But first, why are libraries important?

Extracted from https://techexplorations.com
Page 62

https://techexplorations.com

Why libraries?
It’s simple: libraries allow you to be far more productive and
effective because they make it possible for you to use existing,
tested, high-quality code.

Imagine you are a mechanic, or a builder, or a tailor. As a
mechanic, when you need a new part, you can either design it
and create it yourself (a long, expensive, error-prone process)
or order it from a spare parts vendor. If you are a builder and
need bricks, you can either make them yourself (a long,
expensive, error-prone process) or order them from the
brickyard. If you are a tailor and you need some new fabric,
you can either plant some cotton, harvest it, and produce your
fabric out of it, or just buy it from the market.

As Makers, our objective is to create new things, things that
solve a particular problem we have, or help us learn. The tools
that we use, combined with our skill and knowledge, dictate
how effective we will be in our making.

The Arduino is extraordinary in the technology world because
of the abundance of shared and reusable code. Thanks to the
Arduino libraries, it is possible for us to build our projects on
the shoulders of other makers. This can make, even a
beginner, very productive.

This is why I decided it is important to introduce you to
libraries now, instead of waiting for a later time.

Let’s look at an example.

An example of a library and how to install
it
Let’s say that you want to have a small web server running on
your Arduino. You can set up this server so that you can use
your browser to control lights and read sensor values

Extracted from https://techexplorations.com
Page 63

https://techexplorations.com

connected to it. The Arduino can handle this, no problem. You
could spend a few days (or weeks) and write your own bare-
bones web server (assuming you have a good understanding
of HTTP), or use Webduino.

Webduino is a library that was written at NYC Resistor to make
it very easy to turn an Arduino into a basic web server.

The home page for Webduino on Github is
https://github.com/sirleech/Webduino.

Including a new library

A new dialogue box will pop up. Browse to the location of the
ZIP file, select it, and click on Choose to complete the process:

Extracted from https://techexplorations.com
Page 64

https://github.com/sirleech/Webduino.
https://techexplorations.com

The Library addition dialogue box

When you click on “Choose,” the dialogue box will disappear,
but nothing else is going to happen. No confirmation, no
sound. To make sure that the Webduino library was installed,
you can look for the example sketches that most libraries
include.

Go to File Examples, and look at the bottom of the list for your
new library:

Extracted from https://techexplorations.com
Page 65

https://techexplorations.com

There’s the new library, right at the bottom of the list!

Extracted from https://techexplorations.com
Page 66

https://techexplorations.com

You can also find a list of names and descriptions of all the
libraries currently installed in your IDE. Go to Sketch Include
Library Manage Libraries, and this window will pop-up:

The library manager can tell you what’s installed and install
new libraries.

The Library Manager, apart from telling you what is already
installed, can also install new libraries from online sources with
the click of a button.

You can add a new library from the Library Manager.

Extracted from https://techexplorations.com
Page 67

https://techexplorations.com

Now you should have a good overview of the IDE and its most
essential functions. Let’s have a look at the Arduino
programming language next.

Ready for a bit of programming? Continue with lesson 6.

New to the Arduino?
Arduino Step by Step Getting Started is our most popular
course for beginners.

This course is packed with high-quality video, mini-projects,
and everything you need to learn Arduino from the ground up.
We’ll help you get started and at every step with top-notch
instruction and our super-helpful course discussion space.

Extracted from https://techexplorations.com
Page 68

https://techexplorations.com/guides/arduino/begin/ls6/
https://wp.techexplorations.com/wp-content/uploads/2020/01/DSC_0114-1000h-square.jpg
https://techexplorations.com

Lesson 6: The basics of Arduino
programming: program structure,
functions, variables, operators
Introduction to the Arduino guide series

The basics of Arduino
programming: program
structure, functions,
variables, operators
In this lesson, we discuss the basics of Arduino programming
to help you understand the basic concepts of the Arduino
language: the structure, the functions, the variables and the
operators.

On the second-last lesson of our 7-lesson introduction course
on the Arduino, we’re going to discuss the basics of Arduino
programming.

In the previous lesson, you learned about the power of the
libraries that are part of the Arduino ecosystem, and how
these libraries can help turbo-boost your productivity.

Just like a builder needs to know how to use the brick and
other components that are used in building a new house,
similarly, you will need to know how to use and extend the
libraries.

Even more important, you will need to know how to write your
own code.

Extracted from https://techexplorations.com
Page 69

https://techexplorations.com/guides/arduino/begin/lsn5/
https://techexplorations.com

The combination of

understanding the basics of programming,1.
understanding the basics of electronics,2.
and understanding how to use the shared3.
work of others,

will make it possible for you to create amazing things.

This is what this (and the next and last lesson) is about:
helping you understand the basic concepts in programming
the Arduino.

The Arduino language
The Arduino language is C++.

Most of the time, people will use a small subset of C++, which
looks a lot like C. If you are familiar with Java, then you will
find C++ easy to work with and to recognize. If you have
never programmed before, do not worry, and do not be afraid.
In the next few paragraphs, you will learn everything you need
to get started.

The most important “high level” characteristic of C++ is that it
is object-oriented. In such a language, an object is a construct
that combines functional code (the code that does things like
calculations and memory operations), with “state” (the results
of such calculations, or simply values, stored in variables).

Object orientation made programming much more productive
in most types of applications when compared with earlier
paradigms because it allowed programmers to use
abstractions to create complicated programs.

For example, you could model an Ethernet adaptor as an
object that contains attributes (like its IP and MAC addresses)
and functionality (like asking a DHCP server for network

Extracted from https://techexplorations.com
Page 70

https://techexplorations.com

configuration details). Programming with objects became the
most common paradigm in programming, and most modern
languages, like Java, Ruby, and Python, have been influenced
heavily by C++.

Much of the sketch code you will be writing and reading will be
referencing libraries containing definitions for objects (these
definitions are called “classes”). Your original code, to a large
extent, will consist of “glue” code and customizations. This
way, you can be productive almost right away by learning a
small subset of C++.

The code that makes up your sketch must be compiled into the
machine code that the microcontroller on the Arduino can
understand. This compilation is done by a special program, the
compiler. The Arduino IDE ships with an open-source C++, so
you don’t have to worry about the details. Imagine: every time
you click the “Upload” button, the IDE starts up the compiler,
which converts your human-readable code into ones and
zeros, and then sends it to the microcontroller via the USB
cable.

As every useful programming language, C++ is made up of
various keywords and constructs. There are conditionals,
functions, operators, variables, constructors, data structures,
and many other things.

In this lesson, you will learn about the structure of an Arduino
program, functions, and variables. Take a bit of time to
consolidate this new knowledge, because next, you will
complete this series with the last lesson in which you will learn
how to program your Arduino to make decisions, and interact
with the outside world.

Let’s take the most important of those things to examine them
one at a time.

Extracted from https://techexplorations.com
Page 71

https://techexplorations.com

The structure of an Arduino sketch
The simplest possible Arduino sketch is this (click here to see
the Gist for this sketch):

void setup() {// put your setup code here, to run once:}void
loop() {// put your main code here, to run repeatedly:}

This code contains two functions in it.

The first one is setup(). Anything you put in this function will
be executed by the Arduino just once when the program
starts.

The second one is loop(). Once the Arduino finishes with the
code in the setup() function, it will move into a loop(), and it
will continue running it in a loop, again and again, until you
reset it or cut off the power.

Notice that both setup() and loop() have open and close
parenthesis? Functions can receive parameters, which is a way
by which the program can pass data between its different
functions. The setup and loop functions don’t have any
parameters passed to them. If you add anything within the
parenthesis, you will cause the compiler to print out a
compilation error and stop the compilation process.

Every single sketch you write will have these two functions in
it, even if you don’t use them.

In fact, if you remove one of them, the compiler again will
produce an error message. These are two of the few
expectations of the Arduino language.

These two functions are required, but you can also make your
own. Let’s look at this next.

Extracted from https://techexplorations.com
Page 72

https://techexplorations.com

Custom functions
A function is merely a group of instructions with a name. The
Arduino IDE expects that the setup() and loop() functions will
be in your sketch, but you can make your own. Group
instructions inside functions is a good way of organizing your
sketches, especially as they tend to get bigger in size and
complexity as you become a more confident programmer.

To create a function, you need a definition and the code that
goes inside the curly brackets.

The definition is made up of at least:

a return type
a name
a list of parameters

Here’s an example

int do_a_calc(int a, int b){ int c = a + b; return c;}

The return type here is int in the first line. It tells the compiler
that when this function finishes its work, it will return an
integer value to the caller (the function that called it).

The name (also known as the “identifier”) of the function is
do_a_calc. You can name your functions anything you like as
long as you don’t use a reserved word (that is, a word that the
Arduino language already uses), it has no spaces or other
special characters like %, $ and #. You can’t use a number as
the first character. If in doubt, remember only to use letters,
numbers, and the underscore in your function names.

In the first line of the body, we create a new variable, c, of
type integer (int). We add a and b and then assign the result
to c.

And finally, in the second line of the body of the function, we

Extracted from https://techexplorations.com
Page 73

https://techexplorations.com

return the value stored in c to the caller of do_a_calc.

Let’s say that you would like to call do_a_calc from your setup
function. Here’s a complete example showing how to do that:

void setup(){ // put your setup code here, to run once: int a =
do_a_calc(1,2);}void loop(){ // put your main code here, to run
repeatedly:}int do_a_calc(int a, int b){ int c = a + b; return c;}

In the setup() function, the second line defines a new
variable, a. In the same line, it calls the function do_a_calc,
and passes integers 1 and 2 to it. The do_a_calc function
calculates the sum of the two numbers and returns the value 3
to the caller, which is the second line of the setup() function.
Then, the value 3 is stored in variable a, and the setup()
function ends.

There’s a couple of things to notice and remember.

Comments
Any line that starts with // or multiple lines that start with /*
and finish with */ contain comments.

Comments are ignored by the compiler. They are meant to be
read by the programmer.

Comments are used to explain the functionality of code or
leave notes to other programmers (or to self).

Scope
In the setup() function, there is a definition of a variable with
an identifier a. In function do_a_calc, there is also a definition
of a variable with the same identifier (it makes no difference
that this definition is in the function definition line).

Having variables with the same name is not a problem as long

Extracted from https://techexplorations.com
Page 74

https://techexplorations.com

as they are not in the same scope. A scope is defined by the
curly brackets. Any variable between an open and close curly
bracket is said to be within that scope. If there is a variable
with the same name defined within another scope, then there
is no conflict.

Be careful when you choose a name for your variables.
Problems with scopes can cause headaches: you may expect
that a variable is accessible at a particular part of your sketch,
only to realize that it is out of scope.

Also, be careful to use good descriptive names for your
variables. If you want to use a variable to hold the number of a
pin, call it something like:

int digital_pin = 1;instead ofint p = 1;

You will thank yourself later.

Variables
Programs are useful when they process data. Processing data
is what programs do, all the time. Programs will either get
some data to process from a user (perhaps via a keypad).
From a sensor (like a thermistor that measures temperature),
the network (like a remote database), a local file system (like
an SD Card), a local memory (like an EEPROM), and so many
other places.

Regardless of the place where your program gets its data
from, it must store them in memory to work with it. To do this,
we use variables. A variable is a programming construct that
associates a memory location with a name (an identifier).
Instead of using the address of the memory location in our
program, we use an easy to remember a name. You have
already met a variable. In the earlier section on custom
functions, we defined a bunch of variables, a, b and c, that
each holds an integer.

Extracted from https://techexplorations.com
Page 75

https://techexplorations.com

Variables can hold different kinds of data other than integers.
The Arduino language (which, remember, is C++) has built-in
support for a few of them (only the most frequently used and
useful are listed here):

C++
Keyword Size Description

boolean 1
byte

Holds only two possible values, true or
false, even though it occupies a byte in
memory.

char 1
byte

Holds a number from -127 to 127.
Because it is marked as a “char,” the
compiler will try to match it to a
character from the ASCII table of
characters.

byte 1
byte Can hold numbers from 0 to 255.

int 2
byte Can hold numbers from -32768 to 32767.

unsigned
int

2
byte Can hold numbers from 0-65535

word 2
byte

Same as the “unsigned int.” People often
use “word” for simplicity and clarity.

long 4
byte

Can hold numbers from -2,147,483,648
to 2,147,483,647.

unsigned
long

4
byte Can hold numbers from 0-4,294,967,295

float 4
byte

Can hold numbers from -3.4028235E38
to 3.4028235E38. Notice that this
number contains a decimal point. Only
use float if you have no other choice. The
ATMEGA CPU does not have the
hardware to deal with floats, so the
compiler has to add a lot of code to make
it possible for your sketch to use them,
making your sketch larger and slower.

Extracted from https://techexplorations.com
Page 76

http://www.asciitable.com/
http://www.asciitable.com/
https://techexplorations.com

string –
char array –

A way to store multiple characters as an
array of chars. C++ also offers a String
object that you can use instead that
provides more flexibility when working
with strings in exchange for higher
memory use.

array – A structure that can hold multiple data of
the same type.

To create a variable, you need a valid name and a type. Just
like with functions, a valid name is one that contains numbers,
letters, and an underscore starts with a letter and is not
reserved. Here is an example:

byte sensor_A_value;

This line defines a variable named sensor_A_value, which will
hold a single byte in memory. You can store a value in it like
this:

sensor_A_value = 196;

You can print out this value to the serial monitor like this:

Serial.print(sensor_A_value);

The serial monitor is a feature of the Arduino IDE that allows
you to get a text from the Arduino displayed on your screen.
More about this later, here I want to show you how to retrieve
the value stored in a variable. Just call its name. Also,
remember the earlier discussion about scope: the variable has
to be within scope when it is called.

Another beautiful thing about a variable is that you can change
the value stored in it. You can take a new reading from the
sensor and update the variable like this:

sensor_A_value = 201;

No problem, the old value is gone, and the new value is stored.

Extracted from https://techexplorations.com
Page 77

https://techexplorations.com

Constants
If there is a value that will not be changing in your sketch, you
can mark it as a constant.

Constants have benefits regarding memory and processing
speed, and it is a good habit to use these.

You can declare a constant like this:

const int sensor_pin = 1;

Here, you define the name of the variable sensor_pin, mark it
as constant, and set it to 1. If you try to change the value
later, you will get a compiler error message, and your program
will not even get uploaded to the Arduino.

Operators
Operators are special functions that operate one or more
pieces of data.

Most people are familiar with the basic arithmetic functions, =
(assignment), +, -, * and /, But there are a lot more.

For example, here are the most commonly used operators:

Operator Function Example

%
Modulo operator. It
returns the
remainder of a
division.

5%2=1

+=, -=, *=,
/=

Compound operator.
It performs an
operation on the
current value of a
variable.

int a = 5;a+= 2;
This will result in a
containing 7 (the original
5 plus a 2 from the
addition operation).

Extracted from https://techexplorations.com
Page 78

https://techexplorations.com

Operator Function Example

++, — Increment and
decrement by 1.

int a = 5;a++;
This will result in a
becoming 6.

==, !=, <,
>, <=, >=

Comparison
operators. Will return
a boolean (true or
false) depending on
the comparison
result.
•
== equality
•
!= un-equality
•
< less than
•
> greater than
•
<= less or equal
than
•
>= greater or equal
than

int a = 5;int b =
6;boolean c = a ==
b;
This will result in variable
c contains a false boolean
value.

!, &&, ||

Logical operators.
The “!” operator will
invert a boolean
value.
! NOT (invert) of a
boolean value
&& AND of two
booleans
|| OR of two booleans

boolean a =
true;boolean b =
true;boolean c =
false;boolean x = !a;
// x falseboolean y =
b && c; // y
falseboolean z = b ||
c; // z true

There are more than these. If you want to work at the bit level,
for example, and manipulate individual bits within a byte
(useful for things like shift registers), you can use bitwise
operators. But this is something you can pick up and learn

Extracted from https://techexplorations.com
Page 79

https://techexplorations.com

later.

Ok, that is enough for one lesson.

I hope that now, you have a clear understanding of these
fundamental concepts in programming: the structure of an
Arduino program, functions, variables, and operators. Just with
what you have learned so far, you can write very interesting
simple programs.

But the real fun begins when your program can make
decisions, and when these programs can sense and control the
environment. You will learn about these capabilities in
tomorrow’s lesson.

There’s only one lesson left in this series, in which you will
learn about Loops, conditions, objects, inputs & outputs. Would
you like to continue?

Extracted from https://techexplorations.com
Page 80

https://wp.techexplorations.com/guides/arduino/begin/lsn7/
https://techexplorations.com/guides/arduino/begin/lsn7/
https://techexplorations.com

New to the Arduino?
Arduino Step by Step Getting Started is our most popular
course for beginners.

This course is packed with high-quality video, mini-projects,
and everything you need to learn Arduino from the ground up.
We’ll help you get started and at every step with top-notch
instruction and our super-helpful course discussion space.

Extracted from https://techexplorations.com
Page 81

https://wp.techexplorations.com/wp-content/uploads/2020/01/DSC_0114-1000h-square.jpg
https://mpl-publisher.com/guides/arduino/begin/lss1/
https://techexplorations.com

Lesson 7: The basics of Arduino
programming: Loops, conditions, objects,
inputs & outputs
Introduction to the Arduino guide series

The basics of Arduino
programming: Loops,
conditions, objects,
inputs & outputs
In this lesson, we discuss the basics of Arduino programming
to help you understand the basic concepts of the Arduino
language: loops and conditionals, classes and objects, inputs
and outputs.

This is the last article of the Getting Started series. We’re
going to complete our discussion of the basics of Arduino
programming.

In the previous lesson, you learned about things like variables,
functions, and loops.

Today, you will build on this knowledge and learn three new
important concepts:

The programming structures that allow your1.
Arduino (and any computer) to make
decisions and repeat instructions.
Classes and objects that allow us (the2.

Extracted from https://techexplorations.com
Page 82

https://techexplorations.com/guides/arduino/begin/ls6/
https://techexplorations.com

programmers) to create reliable programs
that resemble concepts from our real-world
experiences.
Inputs and outputs that enable us to connect3.
external components like buttons and lights,
to the Arduino.

Let’s begin with loops (structures we use to repeat
instructions) and conditionals (structures we use for decision
making).

Loops and conditionals
Conditionals are useful when you want to change the flow of
executing in your sketch. Loops are useful when you want to
repeat a block of code multiple times.

Very often, these two work together; that’s why I discuss them
here in the same section.

Let’s start with a conditional. Imagine you have a red light and
a green light. You want to turn the green light on when you
press a button and the red light on when you leave the button
not pressed.

To make this work, you can use a conditional.

conditional: “if..else”
The most common of these is the if…else statement. Using
pseudo code (that is, a program written in English that looks a
bit like a real program), you would implement this functionality
like this:

if (button == pressed){green_light(on);red_light(off);}
else{red_light(on);green_light(off)}

Extracted from https://techexplorations.com
Page 83

https://techexplorations.com

loop: “while”
If you need to repeat a block of code based on a boolean
condition, you can use the while conditional expression. For
example, let’s say that you want to make a noise with a buzzer
for as long as you press a button. Using pseudo code again,
you can do it like
this:while(button_is_pressed){make_annoying_noise;}

Easy!

loop: “do_while”
You can do the same thing but do the check of the condition at
the end of the block instead of the start. This variation would
look like this:

do{make_annoying_noise;} while(button_is_pressed)

loop: “for”
If you know how many times you want to repeat code in a
block, you can use the for structure. Let’s say you want to
blink a light 5 times.

Here’s how to do it:

for (n = 1 to 5){Turn light on;Turn light off;}

Your light will turn on and then off 5 times. Inside the curly
brackets, you will also have access to the n variable, which
contains the number of a repeat at any given time. With is,
you could insert a conditional so that you leave the lights on
before the last loop ends:

for (n = 1 to 5){Turn light on;if (n < 5) then Turn light off;}

In this variation, the light will only turn off if the n variable is

Extracted from https://techexplorations.com
Page 84

https://techexplorations.com

less than 5.

conditional: “switch”
Another useful conditional is the switch. If you have a
variable, like button_pressed, that can take a few valid
values; you can do something like this with it:

switch (button_pressed){case 1:Blink light one
time;break;case 2:Blink light two times;break;case 3:Blink light
three times;break;default:Don’t blink light;}

The switch statement will check the value stored in the
button_pressed variable. If it is 1, it will blink the light once,
if it is 2, it will blink the light twice, and if it is 3, it will blink
three times. If it is anything else, it won’t blink the light at all
(this is what the “default” case is).

The button_pressed variable can be an integer and could be
taking it values from a membrane keypad, like this one:

Extracted from https://techexplorations.com
Page 85

https://techexplorations.com

A membrane keypad can be used to provide input to your
sketch.

For now, don’t worry about how this keypad works; this is
something you will learn later. Just imagine that when you hit a
key, a number comes out.

Also, notice the keyword “break”? It will cause the execution of
the sketch to jump out of the block of code that is between the
curly brackets. If you remove all the “break” statements from
your sketch and press 1 on the keypad, then the sketch will
cause the light to blink once, then twice, and then three times
as the execution will start in the first case clause, and then
move into the rest.

Extracted from https://techexplorations.com
Page 86

https://techexplorations.com

Classes and objects
You now know that the Arduino language is actually C++ with
a lot of additional support from software, the libraries which
were mentioned earlier, that makes programming easy. It was
also said that C++ is an object-oriented programming
language.

Let’s have a closer look at this feature and especially how it
looks like in Arduino code.

Object-orientation is a technique for writing programs in a way
that makes it easier to manage as they grow in size and
complexity. Essentially, a software object is a model of
something that we want the computer (or an Arduino) to be
able to handle programmatically.

Let me give you an example. Imagine that you have a robotic
hand. The arm only has one finger and can rotate by 360
degrees. The finger can be open or closed. You can model this
hand in an object-oriented way like in this pseudo-code:

class robotic_hand{//These variables hold the state of the
handbool finger;int rotation;//These variables change the state
of the handfunction open_finger();function
close_finger();function rotate(degrees);//These variables report
the state of the handfunction bool
get_finger_position();function int get_rotation_position();}

Can you understand what this code does? I am creating a
model of the hand and giving it the name robotic_hand. The
keyword “class” is a special keyword so that the compiler
understands my intention to create a model.

Inside the class, I define three kinds of components for the
model (=class). First, a couple of variables to hold the current
state of the hand. If the hand is in an open position, the
boolean variable finger will be true. If the hand is rotated at
90 degrees, the integer variable rotation will contain 90.

Extracted from https://techexplorations.com
Page 87

https://techexplorations.com

The second set of components are special functions that allow
me to change the status of the hand. For example, if the hand
is currently open and I want to close it so that it can pick up an
object, I can call the close_finger() function. If I want to
rotate it at 45 degrees, I can call rotate(45).

Finally, the third set of components are functions that allow
me to learn about the status of the hand. If I want to know if
the hand is opened or closed, I can call
get_finger_position(), and this function will respond with
true or false.

The names are up to me to choose so that their role is clear. A
class hides within it components such as these, so the
programmer can think more abstractly about the thing they
are working with, instead of the implementation details.

Let’s say now that you would like to use this class in your
sketch. Here is an example of how you would do it in Arduino:

#include <Robot_hand.h>Robot_hand robot_hand();void
setup(){}void
loop(){robot_hand.open_finger();robot_hand.rotate(45);robot_h
and.close_finger();}

You would start by importing the Robot_hand library, which
contains the class you just created into your Arduino sketch.
You do this with the include statement in the first line of your
sketch.

In the second line, you create an object based on the
Robot_hand class. Think about this for a few moments: a
class contains the blueprints of an object but is not an object;
it is the equivalent of a blueprint for a house, and the house
itself. The blueprint is not a house, only the instructions for
building a house. The builder will use the blueprint as the
instructions to build a house.

Similarly, the robot hand class definition is only the
instructions that are needed for building the robot hand object

Extracted from https://techexplorations.com
Page 88

https://techexplorations.com

in your sketch. In the second line of this example sketch, we
are defining a new object build based on the instructions in the
Robot_hand class, and we give it the name robot_hand().
The object’s name cannot be the same as the name of the
class, that is why it starts with a lowercase r.

In the loop() function, we can call the object’s functions to
make the robot hand move. We can open it using
robot_hand.open_finger() and close it using
robot_hand.close_finger(). Notice that these instructions
start with the name of the object, robot_hand, followed by a
dot, then followed by the name of the function we want to call,
close_finger().

This is called “dot notation”, and is very common throughout
most object-oriented programming languages.

There’s a lot more to learn on this topic, but to get started with
Arduino programming, this level of basic understanding of
object orientation can take you a long way.

Inputs and outputs
Inputs and output are a fundamental feature of the
microcontroller. You can connect devices to special pins on
your Arduino, and read or change the state of these pins
through special instructions in your sketch.

There are two kinds of input and output pins on an Arduino:
digital and an analog.

Let’s have a look at them going forwards.

Digital pins
Digital pins are useful for reading the state of devices like
buttons and switches or controlling things like relays and
transistors or LEDs. These examples have one thing in

Extracted from https://techexplorations.com
Page 89

https://techexplorations.com

common: they only have two possible states.

A button can be either pressed on not pressed. A switch can be
on or off. A relay can be energized or not.

If in your sketch, you want to know the state of a button, you
can connect it to a digital pin. You can wire it up so that when
the button is pressed, a 5V voltage is read by the connected
digital pin, and that is reported as “high” to your sketch.

A button like this one is a digital device. Connect it to a digital
pin.

Let’s suppose that you connected a button to a digital pin on
your Arduino, as I show in this schematic:

Extracted from https://techexplorations.com
Page 90

https://techexplorations.com

A button is connected to digital pin 2. There is also a 10K
resistor that conveys a 0V signal to pin 2 when the button is
not pressed.

When you press the button, the voltage conveyed by the
yellow wire to digital pin 2 is 5V, equivalent to “logical high.”
This happens because when the button is pressed, internally,
the red wire coming from the 5V source on the Arduino is

Extracted from https://techexplorations.com
Page 91

https://techexplorations.com

connected electrically to he yellow wire that goes to pin 2.

When the button is not pressed, the voltage at pin 2 is 0V,
equivalent to “logical low.” This happens because of the
resistor in the schematic. When the button is not pressed, the
yellow wire is connected to the GND pin on the Arduino, which
is at 0V; thus, this level is transmitted to pin 2.

You can read the state of the button in your Arduino sketch
like this:

int buttonState = 0;void setup() {pinMode(2, INPUT); }void
loop(){buttonState = digitalRead(2);if (buttonState == HIGH){
//Do something when the button is pressed} else{//Do
something else when the button is not pressed}}

First, create a variable to hold the state of the button.

Then, in the setup() method, tell the Arduino that you will be
using digital pin 2 as an input.

Finally, in the loop(), take a reading from digital pin 2 and
store it in the buttonState variable.

We can get the Arduino to perform a particular function when
the button is in a specific state by using the if conditional
structure.

What about writing a value to a digital pin? Let’s use an LED as
an example. See this schematic:

Extracted from https://techexplorations.com
Page 92

https://techexplorations.com

An LED is connected to digital pin 13. A 220 resistor protects
the LED from too much current flowing through it.

In this example, we have a 5mm red LED connected to digital
pin 13. We also have a small resistor to prevent burning out
the LED (it is a “current limiting resistor”). To turn the LED on
and off, we can use a sketch like this:

Extracted from https://techexplorations.com
Page 93

https://techexplorations.com

void setup() {pinMode(13, OUTPUT);}void loop()
{digitalWrite(13, HIGH); // turn the LED on (HIGH is the voltage
level)delay(1000); // wait for a seconddigitalWrite(13, LOW); //
turn the LED off by making the voltage LOWdelay(1000); //
wait for a second}

Just like the button example, first, we must tell the Arduino
that we wish to use digital pin 13 as an output. We do this in
the setup() function with pinMode(13,OUTPUT). In the loop()
function, we use the digitalWrite function to write logical
HIGH and LOW to digital pin 13. Each time we change the
state, we wait for 1000ms (=1 second). The Arduino has been
configured to translate logical HIGH to a 5V signal, and logical
LOW to a 0V signal.

Analog pins
Let’s move to analog now. Analog signals on microcontrollers
is a tricky topic. Most microcontrollers can’t generate true
analog signals. They tend to be better at “reading” analog
signals. The ATMEGA328P, which is used on the Arduino Uno,
simulates analog signals using a technique called Pulse Width
Modulation. The technique is based on generating a pattern of
logical HIGHs and LOWs in a way that generates an analog
effect to connected analog devices.

Let’s look at an example. We’ll take the same LED circuit from
the digital pins section and make it behave in an analog way.
The only difference in the schematic is that you have to
change the wire from digital pin 13 to go to digital pin 9
instead. Here is the new schematic:

Extracted from https://techexplorations.com
Page 94

https://techexplorations.com

An LED is connected to digital pin 9. A 220 resistor protects
the LED from too much current flowing through it.

In this example, change the red wire to go to digital pin 9
instead of 13. We do this because we want to make the LED
fade on and off via pulse width modulation. Pin 9 has this
capability, but pin 13 does not.

Extracted from https://techexplorations.com
Page 95

https://techexplorations.com

We have to switch the controlling pin because we want to
simulate an analog signal through the use of Pulse Width
Modulation (PWM). Only a few of the pins on an Arduino can do
this. One of these pins is 9, which we are using in this
example.

Before showing you how to write an analog value to a PWM
pin, look at this YouTube video to see what the end result is
like.

Here is the sketch to make the LED fade on and off:

void setup() {}void loop() {for (int fadeValue = 0 ; fadeValue
<= 255; fadeValue += 5) {analogWrite(9,
fadeValue);delay(30);}}

In the middle of the loop() function, you will find a reference
to the analogWrite function. This function takes two
arguments: the PIN and an 8-bit PWM value.

In the example, the variable fadeValue contains a number that
changes between 0 and 255 in hops of 5 each time it is
analogWrite is called because it is inside a for loop. When
fadeValue is at 0, then the analogWrite function keeps the
output at pin 9 to 0V. When fadeValue is at 255, then
analogWrite keeps the output at pin 9 to 5V. When
fadeValue is at 127, then analogWrite keeps the output at
pin 9 at 0V for half of the time and 5V for the other half.

Because the ATMEGA is a fully digital IC, it simulates analog by
just switching between digital high and low very quickly. For
the LED to be brighter, we give analogWrite a larger value,
which simply increases the amount of time that the pin stays
at logical high versus logical low.

What about reading the state of an analog device? Let’s use a
potentiometer as an example. This example combines an LED
with a potentiomete.

Extracted from https://techexplorations.com
Page 96

https://techexplorations.com

The potentiometer is this diagram has its middle pin (signal)
connected to analog pin 0.

In this example, when you turn the knob of the potentiometer
in one direction, the LED becomes brighter. When you turn it
towards the other direction, it becomes fainter.

We want to make the LED brighter when we turn the knob of
the potentiometer towards one direction and fainter when we
turn it towards the other. To make this happen, we will both

Extracted from https://techexplorations.com
Page 97

https://techexplorations.com

get an analog reading of the state of the potentiometer, and
produce PWM output for the LED.

In this video, you can see how the circuit works:

Here is the sketch:

void setup() {pinMode(9, OUTPUT);}void loop() {int potValue
= analogRead(A0);int brightness =
map(potValue,0,1023,0,255);analogWrite(9,brightness);}

In the setup function, we set pin 9 to output because this is
where we have connected the LED. Pins are inputs by default,
so we don’t have to set analog pin 0 to be an input explicitly.

In the loop function, we get a reading from analog pin 0 (its
name is “A0”) and store it in a local integer variable, potValue.
The function analogRead returns an integer with a range
from 0 to 1024. Remember from the earlier example that the
PWM function can only deal with the value from 0 to 255. This
means that the value we store in potValue will not work with
analogWrite.

To deal with this, we can use the Arduino “map” function. It
takes a number that lies within a particular range and returns
a number within a new range. So in the second line of the loop
function, we create a new local integer variable, brightness.
We use the map function to take the number stored in
potValue (which ranges from 0 to 1023) and output an
equivalent number that ranges from 0 to 255.

Notice that the parameters of the map function match the
range of potValue and brightness? The conversion calculation
is done for you, easy!

Analog read and write are easy once you understand the
implications of the available resolution and Pulse Width
Modulation. With what you already know, you will be able to
work with a multitude of devices using the circuits from the
examples in this section.

Extracted from https://techexplorations.com
Page 98

https://techexplorations.com

For example, if you would like to use a membrane
potentiometer link this one:

A membrane potentiometer. Electrically it works like a normal
rotary potentiometer.

Just remove the rotary potentiometer from the example circuit
and replace it with the membrane potentiometer. You will be
able to control the brightness of the LED by sliding your finger
up and down the membrane.

That wraps up this introductory course on the Arduino!

I hope you enjoyed these articles and that you learned
something new.

Ready for some serious Arduino learning?
Start right now with Arduino Step by Step Getting Started

This is our most popular Arduino course, packed with high-
quality video, mini-projects, and everything you need to learn

Extracted from https://techexplorations.com
Page 99

https://techexplorations.com

Arduino from the ground up.

New to the Arduino?
Arduino Step by Step Getting Started is our most popular
course for beginners.

This course is packed with high-quality video, mini-projects,
and everything you need to learn Arduino from the ground up.
We’ll help you get started and at every step with top-notch
instruction and our super-helpful course discussion space.

Extracted from https://techexplorations.com
Page 100

https://wp.techexplorations.com/wp-content/uploads/2020/01/DSC_0114-1000h-square.jpg
https://techexplorations.com

Introduction to Arduino sensors
Arduino Sensors & Actuators guide series

Introduction to Sensors
& Actuators
In the tutorials in this series, you will learn how to use an LED
and a button, and then go straight into learning how to use
several popular and very useful sensors.

So, you are eager to experiment with your Arduino and some
of the most commonly used peripherals?

In the tutorials in this series, you will learn how to use an LED
and a button, and then go straight into learning how to use
several popular and very useful sensors.

By the time you complete these 11 experiments, you’ll have a
good beginner-level understanding of Arduino programming

Extracted from https://techexplorations.com
Page 101

https://techexplorations.com

and components.

Before you dive right in, please read the following so you can
get a good understanding of sensors.

Sensors are the eyes and ears of machines: they provide
environmental data. There are all sorts of sensors, some more
exotic than others. Here’s a shortlist from Wikipedia:

Light
Motion
Temperature
Magnetic fields
Gravity
Humidity and moisture
Vibration
Pressure
Electrical fields
Sound
Stretch and stress

Extracted from https://techexplorations.com
Page 102

https://en.wikipedia.org/wiki/Sensor#Types
https://techexplorations.com

Clever gadgets combine multiple sensors in order to capture a
more complete snapshot of their environment.

This is similar to our human perception of the environment
that is based on multiple senses, like sight and hearing.

Each sensor that is attached to a machine requires processing
power. The more sensors attached, the greater the processing
requirements on the machine. In the Arduino Uno, the
ATMega328 micro-controller is a simple computer running at a
clock speed of 16MhZ (mega-hertz). This means that this
Arduino can process roughly 16 million instructions every
second. This processing resource has to be shared between all
the things that your Arduino is supposed to do, like reading
values from its sensors, doing calculations, updating a screen
or other outputs, communicating with other devices, and
interacting with the user.

The Arduino is fast, but it has a limit, and your design must

Extracted from https://techexplorations.com
Page 103

https://techexplorations.com

take that into consideration.

What’s next
In the lectures in this section, we will play with the following
components:

An LED and how it works.
A button, and how it works.
A photo-resistor for measuring light.
Combined temperature and humidity.
Infrared line sensor.
Barometric sensor for measuring air
pressure.
Ultrasonic sensor for measuring distance to
other objects.
Tilting, so you know if your gadget has fallen
over.
Orientation.

How sensors work
Simple sensors, like the photo-resistor for measuring light,
work by measuring the voltage they provide to one of the
analog sockets in the Arduino. You can do this by using the
analogRead function. Other sensors are a bit more involved,
and they require special software libraries to work with the
hardware. More often than not, however, these libraries are
very easy to learn and they provide useful extra features at no
additional cost.

Extracted from https://techexplorations.com
Page 104

https://techexplorations.com

Blinking LED
Arduino Sensors & Actuators guide series

How to make an LED
blink on and off
A Light Emitting Diode (LED) is a special kind of a diode that
can emit light.

A Light Emitting Diode is a special kind of a diode in that it can
emit light. Although all diodes do emit light, in most cases this
light is not bright enough so we can’t see it. LEDs are specially
constructed to allow the light produced to escape outwards so
we can see it instead of just being absorbed by the
semiconductor.

A diode is a polarised device. In a polarised device, there is a

Extracted from https://techexplorations.com
Page 105

https://techexplorations.com

correct way and an incorrect way of connecting it to your
circuit. Connecting a polarised device to your circuit incorrectly
will, at least, result in your device not working. In some cases
the device can burn out.

LEDs come in several colours, including white. There are even
LEDs that can generate thousands of colours by combining the
three primary: red, green, blue.

Extracted from https://techexplorations.com
Page 106

https://techexplorations.com

This is what an LED device looks like. Notice that there is a
short and a long “leg”. The short leg is called “the cathode”,
often noted with a “k” and should be connected to the
negative (“-“) voltage. The longer leg is called “the anode”,
often noted with an “a” and should be connected to the
positive (“+”) voltage. Other devices of note that are polarised
and use similar or same terminology are transistors and
certain types of capacitors.

Symbolically, i.e. in diagrams depicting electronic circuits, an
LED is depicted like this:

Extracted from https://techexplorations.com
Page 107

https://techexplorations.com

The schematic symbol for an LED

The basic characteristic of a diode is that it is a
semiconducting device that allows the flow of electricity
(electrons) only towards one direction. Think of it as the
equivalent of a plumbing valve that allows water to flow only in
one direction. Therefore, diodes are used in situations where
we want to restrict the directionality of electricity. Diodes are
used extensively in applications like the conversion of current
from alternating to direct, in radio transmitters for the
modulation of signals, and many others.

The symbol of a diode is almost the same as the one for an
LED. The only difference is the presence of three little arrows
which show that light is emitted from an LED:

The schematic symbol for a regular LED

Simulation
I have recorded a short video to show you how to run this
experiment inside a simulator. This is the best way to
experiment with the Arduino if you don’t have the real thing.
Be sure to read the complete tutorial to understand the details
of the circuit and the sketch.

But if you are in a hurry, watch this video.

Extracted from https://techexplorations.com
Page 108

https://techexplorations.com

Let’s experiment with an LED
With the background and theory behind us, let’s implement
our first Arduino circuit. The aim is to become familiar with
plugging components into the breadboard, uploading and
running a sketch.

In our first sketch we will simply make an LED blink on and off.

Here’s a diagram of the circuit you need to build now.

The wiring diagram for the “blinking LED” experiment.

Follow these steps to wire this circuit:

Extracted from https://techexplorations.com
Page 109

https://techexplorations.com

Take an LED, and notice that it has two pins,1.
with one longer than the other. The longer
pin is the anode, and the short pin is the
cathode. We always connect the cathode
towards the GND pin of the Arduino.
Take a resistor (it can be any value between2.
220 Ohm and 500 Ohm, and this experiment
will work well), and connect one pin in one of
the sockets of column “2” in the breadboard.
It doesn’t matter which pin it is since the
resistor, unlike the LED, can work the same
either way you connect it. Connect the other
pin of the resistor in a socket in an empty
column (make this column “3”).

Connecting a resistor in series with an LED is important. The
LED has a very small resistance on its own. If you connect it
to your Arduino without a resistor, it will result to a
large current flowing through it. This can damage the
LED, but worse, it can damage your Arduino.

This is described mathematically by Ohm’s Law, which states
that R=V/I, where R is the resistance of a device, V is the
voltage at its two connectors, and I the current that flows
through it. If you solve this equation for I, you get that I=V/R.
For an LED, R is almost zero, so no matter what the V is, the I
will be a very large number.

Want to learn

Extracted from https://techexplorations.com
Page 110

https://techexplorations.com

electronics?

Our course “Basic Electronics for Arduino Makers” is designed
specifically for people that use the Arduino as a learning and
creativity tool.

This course will teach you the basics of electronics so that you
know what things like current limiting resistors, voltage
dividers, power supplies, transistor switches, Ohm’s Law, and
lots more, actually are.

Learn More

The LED is a “POLARISED device”. What does this mean?

In electronics, there are several devices, like an LED, that are
“polarised”. This means that you have to be careful how you
connect them to a circuit.

Polarised devices have a positive and a negative pin. The
positive pin is called “anode”, and the negative is called
“cathode”.

Examples of polarised devices, apart from the LED, are
electrolytic capacitors, batteries, diodes, and operational
amplifiers.

Extracted from https://techexplorations.com
Page 111

https://wp.techexplorations.com/wp-content/uploads/2016/03/S7-610-SIDE-FixedVoltageRegulator_1-00-10-13-380-small.jpg
https://techexplorations.com//so/befam1/
https://techexplorations.com

In the circuit of this experiment, the tricky part has to do with
connecting the LED in accordance with its polarity. The “rule of
thumb” is to remember that the anode (the positive pin) is
longer longer than the cathode (the negative pin), just like any
positive number is bigger than any negative number. Always
connect the cathode towards the GND pin of your Arduino.

To finish up with the wiring, plug the Arduino USB cable into an
available USB port in your computer. What you should have
now is something like this:

Connect your Arduino to your computer via the USB cable.

The program, a.k.a. “sketch”
The LED isn’t doing anything at the moment. To get it to light
up and blink, we need to upload a sketch to the Arduino with
the appropriate instructions.

Here’s the program we’ll use. I’ll explain how it works. You can

Extracted from https://techexplorations.com
Page 112

https://techexplorations.com

either type it into a new Arduino IDE editor window, or load it
by selecting File > Examples > 01. Basics > Blink from the
Arduino IDE menu. If you do this, remember to change the
number “13” to “9” for variable “led”. I also made it available
as a text file download from the materials tab.

You can get this sketch from Github.

// give a name to the pin to which the LED is connected:int led
= 9;// the setup routine runs once when you press reset:void
setup() { // initialize the digital pin as an output. pinMode(led,
OUTPUT);}// the loop routine runs over and over again
forever:void loop() { digitalWrite(led, HIGH); // turn the LED on
delay(1000); // wait for a second digitalWrite(led, LOW); // turn
the LED off delay(1000); // wait for a second}

Because this is your first ever Arduino program, I will explain a
few things before continuing:

Need a programming refresher?

If you wish, you can also revisit the programming tutorials Part
1 and Part 2 where I go into more detail on the basics of
programming the Arduino.

Comments

Any text following “//” or in-between “/*” and “*/” is a
comment, and the Arduino will ignore it.

People use these symbols to type comments, like in this
example.

Functions

An Arduino program can be broken down in parts by using
functions. Functions make it easy to create little programs
within a large program, and to call each of these little
programs by name.

Extracted from https://techexplorations.com
Page 113

https://gist.github.com/futureshocked/776b108a098a0f30d4496876d7b78f26
https://techexplorations.com/guides/arduino/begin/ls6/
https://wp.techexplorations.com/guides/arduino/begin/ls6/
https://techexplorations.com/guides/arduino/begin/lsn7/
https://techexplorations.com

In this example, we used two functions with names setup() and
loop().

These are special functions that the Arduino will call itself.
When the Arduino starts, it will first call the setup() method
and execute any commands it finds inside. Then, it will call
loop() again and again until you turn off the power, every time
executing whatever commands it finds inside. You can create
your own functions and name them whatever you like, as long
as you don’t use a reserved name (like “loop” or “setup”).

Function names can’t have white spaces or other “special”
characters inside them.

A function may or may not return a value when it finishes its
execution. Notice that loop is declared as void loop()? The void
means that loop does not return anything when it finishes its
execution. Same thing happens with setup().

Local and global variables

If you want to store and retrieve values in your sketch, you
need to use variables. Variables can store numbers, text,
booleans (true/false values) and other data types. In the very
beginning of this example, we have this statement:

int led = 9;

This creates a global variable named led, and stores the value
9 in it, which is of type int (integer).

A global variable is accessible from anywhere in your sketch.

In this example, you can see that inside the setup() function,
there is a reference to “led”, and similarly there is a reference
to “led” from inside the loop() function.

On the other hand, a local variable is one that is only
accessible from within its own context.

Extracted from https://techexplorations.com
Page 114

https://techexplorations.com

If we had declared the led variable inside the setup() function,
then it would only be accessible by other statements inside the
setup() function and would not be accessible from the loop()
function.

Arduino functions

Arduino’s magic is in the functions that are build-in to the
language. These functions make it easy to control many
aspects of our hardware.

Notice that in the setup() function, there is a call to the
function pinMode. This function takes in two parameters: first
the number of the pin we want to configure, and second the
mode that we want to assign to this pin.

In our example, we have pinMode(led, OUTPUT);. Remember
that we have a global variable called led in which we stored
the number “9”. So we can re-write the pinMode instruction as
pinMode(9, OUTPUT);.

This means that we configure pin 9, which is a digital pin with
possible states HIGH (5V) and LOW (GND) to be an output.
Being an output, this pin can be used to send a value to a
connected device, in our case the LED.

With the setup() function complete, the Arduino then starts
calling the loop() function. The first thing that happens there is
calling the digitalWrite function:

digitalWrite(led, HIGH);

With digitalWrite, we assign a new state to a pin. We can
rewrite this statement as digitalWrite(9, HIGH);, and, as you
can probably guess, we are changing the state of pin 9 to
HIGH, which is 5V. As soon as this happens, your LED will light
up!

We want to keep this LED lit for a little while, so we use the
instruction delay to keep things as they are. delay accepts one

Extracted from https://techexplorations.com
Page 115

https://techexplorations.com

parameter, that is the number of milliseconds to wait for.

So in our case:

delay(1000);

means: “wait for 1000 milliseconds”, which is 1 second.

Then we call digitalWrite again, but this time we change the
state of pin 9 to LOW, which is 0 Volts.

digitalWrite(9, LOW);

We wait at this state for another second, then the loop starts
all over again.

So there you have it, your first Arduino circuit, and a blinking
LED!

In the next tutorial, we will make the same LED, using the
exact same circuit, fade on and off, giving us a much nicer
visual effect to look at.

Ready for some serious Arduino learning?
Start right now with Arduino Step by Step Getting Started

This is our most popular Arduino course, packed with high-
quality video, mini-projects, and everything you need to learn
Arduino from the ground up.

Extracted from https://techexplorations.com
Page 116

https://techexplorations.com

Fading LED
Arduino Sensors & Actuators guide series

How to make an LED
fade on and off
In this article, you will learn how to make an LED fade on and
off instead of simply blinking.

Extracted from https://techexplorations.com
Page 117

https://techexplorations.com

In the previous tutorial, you learned how to setup a simple
circuit in which an LED blinks on and off. The Arduino sketch
that drove the circuit simply wrote a HIGH or LOW value to the
digital output pin 9, and the LED was turn on or off
accordingly.

In this article, you will learn how to make the LED not blink but
fade on and off. You will keep the exact same circuit, and only
change the sketch to make this happen.

Simulation
I have recorded a short video to show you how to run this
experiment inside a simulator. This is the best way to
experiment with the Arduino if you don’t have the real thing.
Be sure to read the complete tutorial to understand the details
of the circuit and the sketch.

If you are in a hurry, watch this video first.

The wiring diagram
Here is the wiring diagram, in case you need it:

Extracted from https://techexplorations.com
Page 118

https://techexplorations.com

The wiring diagram for the “blinking LED” experiment.

The sketch
And, here’s the new sketch (slightly modified from the sample
in the Arduino IDE which you can load by going to File >
Examples > 01.Basics > Fade) (or you can get this sketch from
Github):

int led = 9; // the pin that the LED is attached toint brightness
= 0; // the bigger this number, the brighter the LED isint
fadeAmount = 5; // the bigger this number, the faster the the
LED will fade on or off// the setup routine runs once when you
press reset:void setup() { pinMode(led, OUTPUT); // declare pin

Extracted from https://techexplorations.com
Page 119

https://gist.github.com/futureshocked/255a38181ca8425f9579928121a6bead
https://gist.github.com/futureshocked/255a38181ca8425f9579928121a6bead
https://techexplorations.com

9 to be an output:}// the loop routine runs over and over again
forever:void loop() { analogWrite(led, brightness); // set the
brightness of pin 9: brightness = brightness + fadeAmount; //
change the brightness for next time through the loop: //
reverse the direction of the fading at the ends // of the fade: if
(brightness == 0 || brightness == 255) { fadeAmount = -
fadeAmount ; } delay(10); // wait for 10 milliseconds to see the
dimming effect}

The most important difference between this sketch and the
blinking LED sketch, is that we now use analogWrite instead of
digitalWrite.

While digitalWrite can only output a HIGH or LOW value,
analogWrite allows us to output values between 0 and 255.

The analogWrite function uses a technique called “Pulse Width
Modulation”, or PWM for the abbreviated short. A the function
takes in one argument, a number from 0 to 255. The Arduino
will then convert this value into a square waveform. The
square waveform has a high of 5V and a low of 0V, but
depending on the PWM value we set in analogWrite, the
duration of HIGH varies.

When we set PWM value to 255, the square wave is at HIGH
permanently and the connected LED is at its brightest setting.

When we set PWM to 0, the square wave is at 0V permenently,
and the LED is switched off.

In-between values, like 120, result to the square wave being
HIGH for around half of the period, and LOW for the rest of the
period. That way, the LED is around half as bright as it can be.

The amount of time of a period that a PWM signal is at HIGH is
known as the “duty cycle”.

Using PWM, a simple device like the Arduino can simulate an
analog output signal, which as a real analog effect on a device
like an LED or a motor. PWM gives us a simple way to set an

Extracted from https://techexplorations.com
Page 120

output:}//the
https://techexplorations.com

LED to 1/3 (or any other fraction) of its full potential
brightness.

Similarly, we can control the speed of a motor or the loudness
of a speaker.

In this video, I show what a PWM signal that is produced by an
Arduino looks like in the oscilloscope. This signal causes the
LED to fade on/off.

WANT TO LEARN HOW
TO USE AN
OSCILLOSCOPE?

Do you think that the oscilloscope is too complicated, too
expensive and has no place on your workbench? You’re
wrong!With this course, you will learn how to use the
oscilloscope and take your understanding of electronics to the
next level.

In the loop() function, we first set the brightness of the LED,

Extracted from https://techexplorations.com
Page 121

https://wp.techexplorations.com/wp-content/uploads/2019/11/Oscilloscopes-for-Busy-People-400.jpg
https://techexplorations.com

using the analogWrite() function, by selecting the pin to which
the LED is connected, and the ‘brightness’.

Brightness is a global variable of type integer that is initialised
to be 0 when the program starts. So, the first time that the
program runs in the Arduino, this instruction will look like this:

analogWrite(9, 0);

In the next instruction, after the comment, we calculate a new
value for the brightness. The new brightness is equal to the old
brightness plus the fadeAmount, the value stored in another
global variable that we set to be 5 in the very start of the
program. So, the first time the program runs, this instruction
will look like this:

brightness = 0 + 5;

Therefore, brightness will now become 5.

Next, we use a control structure to determine if we have
reached a limit for the brightness, either the lower limit (0) or
the upper limit (255). If we have, then we switch the sign of
the fadeAmount variable. The effect is that if the LED was
becoming brighter because the fadeAmount was positive, then
once it reaches it brightest setting (when brightness equals
255), then fadeAmount will be changed its negative (-5) and
brightness will start moving towards zero.

In the statement:

if (brightness == 0 || brightness == 255)

…the part within the parentheses is called a “condition”. The
“==” tests for equality. You could test for “greater” with “>”
or “less” with “<“, as well as for a variety of other conditions.

In the same statement, the “||” is the boolean operator “OR“.
You can join two conditions together, and the result will be
true if one of them is true. So, in our example, whatever is

Extracted from https://techexplorations.com
Page 122

https://techexplorations.com

between the curly brackets will be executed if either
brightness is zero OR brightness is 255.

Ready for some serious Arduino learning?
Start right now with Arduino Step by Step Getting Started

This is our most popular Arduino course, packed with high-
quality video, mini-projects, and everything you need to learn
Arduino from the ground up.

Extracted from https://techexplorations.com
Page 123

https://techexplorations.com

Button
Arduino Sensors & Actuators guide series

How to use a momentary
button
In this article, I will show you how to use a momentary button
with the Arduino.

Extracted from https://techexplorations.com
Page 124

https://techexplorations.com

A button is a simple on-off switch. There are many kinds of
buttons, distinguished by the mechanism used to close or
open a circuit, but essentially all buttons belong to one of two
families: those that keep the connection in either an open or a
closed state, and those that return to their original (default)
state.

In the image below you can see some examples of switches.

Extracted from https://techexplorations.com
Page 125

https://techexplorations.com

Three types of switches: (1) Toggle switch, (2) On/off switch,
(3) momentary button

In this image you can see:

A toggle switch. It stays open or closed after1.
pushing it.
An on/off switch that also remains open or2.
closed.
A momentary button that remains closed3.
while pressure is applied to it, then returns
to the open position.

Extracted from https://techexplorations.com
Page 126

https://techexplorations.com

A keyboard key or a door bell button are both momentary
buttons. Momentary buttons are also known as “biased”
because they have a tendency to return to their original
position. A light switch, on the other hand, stays at the position
it was put in, so it is often called “un-biased”.

Simulation
I have recorded a short video to show you how to run this
experiment inside a simulator. This is the best way to
experiment with the Arduino if you don’t have the real thing.
Be sure to read the complete tutorial to understand the details
of the circuit and the sketch.

But if you are in a hurry, watch this video.

Experiment
Let’s create a simple circuit to demonstrate a button.

We don’t really need the Arduino for this. A battery, an LED, a
resistor and the button itself would suffice.

But, using the Arduino is simple enough, and it’s already got
an LED in pin 13 we can use anyway, and no need to worry
about a battery pack.

Plus, we can use the monitor to actually see a message when
the button is pressed.

So, we’ll setup this circuit:

Extracted from https://techexplorations.com
Page 127

https://techexplorations.com

A simple button circuit. When you press the button, the LED
turns on.

Once assembled, your circuit will look like this:

Extracted from https://techexplorations.com
Page 128

https://techexplorations.com

The button circuit on a breadboard.

The sketch
The sketch is simply taking a reading from digital pin 2, where
one of the pins of the button is connected, and writing a value
to digital pin 13, where the LED is connected.

I could have written this script to be even smaller, but I will
leave that for you to do as an exercise.

Here is the sketch on Github.

/* Pushbutton sketch a switch connected to pin 2 lights the
LED on pin 13*/const int ledPin = 13; // choose the pin for the
LEDconst int inputPin = 2; // choose the input pin (for a //
pushbutton)void setup() {pinMode(ledPin, OUTPUT); // declare
LED as output pinMode(inputPin, INPUT); // declare pushbutton
as input}void loop(){int val = digitalRead(inputPin); // read
input valueif (val == HIGH){digitalWrite(ledPin,HIGH);}
else{digitalWrite(ledPin,LOW); }}

Extracted from https://techexplorations.com
Page 129

https://gist.github.com/futureshocked/1e38afe8c860ea5107e2a4be7cfc799d
https://techexplorations.com

And that’s how you can use a momentary button with the
Arduino!

Ready for some serious Arduino learning?
Start right now with Arduino Step by Step Getting Started

This is our most popular Arduino course, packed with high-
quality video, mini-projects, and everything you need to learn
Arduino from the ground up.

Extracted from https://techexplorations.com
Page 130

https://techexplorations.com

Potentiometer
Arduino Sensors & Actuators guide series

How to use a
potentiometer
A potentiometer is a device that allows you to change the
value of a resistance by turning a knob. In this tutorial you will
learn how to use a potentiometer.

Extracted from https://techexplorations.com
Page 131

https://techexplorations.com

A potentiometer is a device that allows you to change the
value of a resistance by turning a knob.

In this tutorial you will learn how to use a potentiometer.

Extracted from https://techexplorations.com
Page 132

https://techexplorations.com

A potentiometer is a very simple sensor. It senses the position
of its knob.

Let’s put this circuit together, and then we’ll discuss how it
works. In particular, we’ll see what is happening inside the
potentiometer.

Simulation
I have recorded a short video to show you how to run this
experiment inside a simulator. This is the best way to
experiment with the Arduino if you don’t have the real thing.
Be sure to read the complete tutorial to understand the details
of the circuit and the sketch.

But if you are in a hurry, watch this video.

Extracted from https://techexplorations.com
Page 133

https://techexplorations.com

Circuit assembly
Let’s assemble the circuit. You will need:

The Arduino
A potentiometer
An LED
A resistor to protect the LED (I used a 1k
resistor, but you can use any value from 220
to 1k)

As you turn the knob of the potentiometer, the resistance
connected to its output pin changes. This in turn changes the
voltage on that pin. This output voltage is read by the Arduino
at analog pin 0 (A0).

The Arduino will then use digital pin 11 to drive the LED.
Although pin 11 is digital, we are using its Pulse Width
Modulation (PWD) feature, like we did back in Lecture 5. We
just glossed over this feature back then: we used the
analogWrite instruction which makes use of this feature. Later
in this lecture I will explain how PWD works.

Extracted from https://techexplorations.com
Page 134

https://techexplorations.com

This circuit uses a potentiometer to control the brightness of
an LED.

Here’s a photo of the assembled circuit on my breadboard:

Extracted from https://techexplorations.com
Page 135

https://techexplorations.com

The experiment circuit on my breadboard.

Potentiometer, principle of operation
The potentiometer contains a voltage divider. A voltage divider
is a simple arrangement of two resistors that can reduce an
input voltage to a smaller voltage that depends on the
resistors that make up the circuit.

In a potentiometer, we still have these two resistors inside the
package, but at least one of them is variable,. This means the
resistance of the resistor inside the potentiometer changes as
we turn the knob.

In the diagram on the right, the pin in the middle is connected
to a dial that is made of conductive material, like copper. They
gray-coloured circle represents a resistor, with its two ends
connected to V+ and Ground. As the dial comes in contact
with different parts of the resistor, it samples a voltage
between V+ and ground, and we can read this voltage from

Extracted from https://techexplorations.com
Page 136

https://techexplorations.com

the middle pin.

So there you have it, a potentiometer is nothing more than a
variable voltage divider.

A variable resistor, like the one inside a potentiometer.

Want to learn
electronics?

Extracted from https://techexplorations.com
Page 137

https://techexplorations.com

Our course “Basic Electronics for Arduino Makers” is designed
specifically for people that use the Arduino as a learning and
creativity tool.

This course will teach you the basics of electronics so that you
know what things like current limiting resistors, voltage
dividers, power supplies, transistor switches, Ohm’s Law, and
lots more, actually are.

Learn More

What is Pulse Width Modulation?
You learned about Pulse Width Modulation in the tutorial on
how to make an LED fade on and off. If you haven’t completed
that tutorial yet, please do that now because you will need
that knowledge going forward. In fact, in this experiment you
will use PWM to control an LED, just like you did in the fading
LED tutorial. The difference is that in this tutorial, you will
control the PWM value through the potentiometer. In the
fading LED tutorial, the Arduino controlled the PWM value
inside a loop in the sketch.

But since we are on the topic of PWM, let’s have another look
at it.

Arduino’s digital pins can output HIGH and LOW, as we have
already seen. Some of these digital pins, however, are special:

Extracted from https://techexplorations.com
Page 138

https://wp.techexplorations.com/wp-content/uploads/2016/03/S7-610-SIDE-FixedVoltageRegulator_1-00-10-13-380-small.jpg
https://techexplorations.com//so/befam1/
https://mpl-publisher.com/guides/arduino/sensors/led_fade/
https://mpl-publisher.com/guides/arduino/sensors/led_fade/
https://techexplorations.com

although they can still only output HIGH and LOW, their output
can be modulated is a way that this output can behave as if it
was analog.

Have a look at the diagram below, taken from the Arduino web
site.

PWM and duty cycles (original: arduino.cc)

A “normal” digital pin outputs 0V or 5V, like in the top and
bottom waveform examples. But, in a pin that supports PWM,
we can output 5V for only part of the period. In the second
waveform, for example, we output 5V for 25% of the period,
and 0V for the rest. In the third example, its 50% and 50%
respectively.

Extracted from https://techexplorations.com
Page 139

https://techexplorations.com

On the LED, this kind of modulation on the output signal has
an effect similar to using an analog pin and outputting voltage
in the range of 0V to 5V. In effect, we simulate analog output
using a digital pin!

The sketch
Here’s the sketch that drives this circuit (here is the sketch on
Github):

int potentiometerPin = 0;int ledPin = 11;int potentiometerVal
= 0;void setup(){ Serial.begin(9600); // setup serial}void
loop(){ potentiometerVal = analogRead(potentiometerPin); //I
use the map function because PWM pins can only accept
//values from 0 to 255. Analog pins can output values from //0
to 1023. With the map function, the range 0-1023 is
//converted to appropriate values from 0 to 255. int
mappedVal = map(potentiometerVal,0,1023,0,255);
Serial.print(potentiometerVal); Serial.print(” – “);
Serial.println(mappedVal); analogWrite(ledPin,mappedVal);
delay(10);}

There is nothing new here. We have seen the “map” function
in an earlier lecture, so you know that this function is used
when we want to make a range of values fit within another
range of values. In this case, we read values in the range of 0
to 1023 from analog pin 0, and we want to make this fit in the
range 0 to 255, which is what the pulse width modulation-
capable pin 11 can output.

Other than that, we simply use the “analogRead” function to
read a value from analog pin 0, and the “analogWrite” function
to create a PWM pulse on digital pin 11.

Ready for some serious Arduino learning?
Start right now with Arduino Step by Step Getting Started

This is our most popular Arduino course, packed with high-

Extracted from https://techexplorations.com
Page 140

https://gist.github.com/futureshocked/814e2965287f5d5752b721463ad9a0cf
https://gist.github.com/futureshocked/814e2965287f5d5752b721463ad9a0cf
https://techexplorations.com

quality video, mini-projects, and everything you need to learn
Arduino from the ground up.

Extracted from https://techexplorations.com
Page 141

https://techexplorations.com

Infrared line sensor
Arduino Sensors & Actuators guide series

Infrared line sensor
An infrared line sensor is a simple device made up of an
infrared emitting LED and an infrared sensitive photo-resistor.
You could use one of these sensors to build a robot that follows
a dark line on the floor, or your own heart rate monitor.

An infrared line sensor is a simple device made up of an
infrared emitting LED and an infrared sensitive photo-resistor.

You could use one of these sensors to build a robot that follows
a dark line on the floor, or your own heart rate monitor.

The principle of operation is very simple: The transmitter
produces infrared light which bounces of a surface and comes
back to be captured by the photo-resistor.

The more infrared light is reflected back into the photo-
resistor, the higher the output of the sensor gets.

In our experiment we will use a QRE1113 line sensor from

Extracted from https://techexplorations.com
Page 142

https://techexplorations.com

Sparkfun. You can get something like this on eBay for less than
$2.

Assembly
Let’s puts together this circuit and test out the motion sensor.

We will need:

The Arduino
Three jumper wires
An QRE1113 line sensor or equivalent (like
this ywRobot device).

Here’s what we are going to build (below).

For power, you can plug this sensor into either the 3V or 5V
sockets on the Arduino.

Extracted from https://techexplorations.com
Page 143

https://www.ebay.com.au/itm/1PC-New-Infrared-Line-Track-Follower-Sensor-Shield-For-Arduino-/200941218536?pt=AU_B_I_Electrical_Test_Equipment&hash=item2ec907aae8&_uhb=1
https://techexplorations.com

The completed circuit of the Arduino with an QRE1113 infrared
line sensor

Sketch
This one is very simple, just read the analog output at pin A0
and print it to the monitor (here is the sketch on Github):

// Line Sensor Breakout – Analogint out;void
setup(){Serial.begin(9600); // sets the serial port to 9600}void
loop(){out = analogRead(0); // read analog input pin
0Serial.println(out, DEC); // print the value of the
sensordelay(100); // wait 100ms for next reading}

First, create the variable that will hold the value from the
analog pin, named out.

Inside void setup(), we set the Serial port to 9600 baud rate so
that the sensor values can be displayed on the serial monitor
while the sketch is running.

Extracted from https://techexplorations.com
Page 144

https://gist.github.com/futureshocked/1780c5ff1e9bafece817b422a9ebe08c
https://techexplorations.com

Inside the loop() function we read the input from analog pin 0
(A0) and store it in the out variable.

We display the value in the Serial monitor using the
Serial.println(out, DEC) command. We use println() (instead of
just print()) to display each value in a new line. We use the
DEC parameter inside the println() command to display the
value as a decimal.

We introduce a 100ms delay to reduce the rate by which the
sensor is read.

Ready for some serious Arduino learning?
Start right now with Arduino Step by Step Getting Started

This is our most popular Arduino course, packed with high-
quality video, mini-projects, and everything you need to learn
Arduino from the ground up.

Extracted from https://techexplorations.com
Page 145

https://techexplorations.com

Light sensor (analogue)
Arduino Sensors & Actuators guide series

Measuring light
Measuring light with the Arduino is really easy. There are many
sensors capable of detecting or measuring light, but the photo-
resistor is one of the easiest to use.

Measuring light with the Arduino is really easy. There are many
sensors capable of detecting or measuring light, but the photo-
resistor is one of the easiest to use. A photo-resistor is simply
a resistor in which the resistance changes in accordance to its
exposure to light.

Extracted from https://techexplorations.com
Page 146

https://techexplorations.com

The photo-resistor
You can find these devices on eBay for less than $3 for a pack
of ten. Think about what you can do with a device that can
detect light. Of course, your gadget will be able to know if its
day or night, or if the lights are on. So you could build a gadget
that turns on a small light at the entrance of you home when it
darkens, so you don’t have to walk in the dark.

You could also use a photo-sensitive device to allow two
gadgets to communicate with light; this is the principle behind
the typical television remote control where the remote control
and the television communicate using infrared light. You could
also build a simple robot that follows a bright or dark line on
the floor. Can you think of anything else you could do with a
light sensor?

Extracted from https://techexplorations.com
Page 147

https://techexplorations.com

Create a light-sensing circuit
We’ll now create a circuit that contains a photo-resistor, and
we’ll use an Arduino sketch to take light intensity readings
from it.

Look at the circuit in the image below, and try to copy it. Here
are a few things to be extra careful about:

Counting from the right, the photo-resistor is
connected to a socket in column 1. Its
second leg is connected to a socket in
column 4.
We use a 1 kOhm resistor (or close, the
exact rating is not important in this exercise)
in series with the photo-resistor in order to
create a “voltage divider”. More about this
in a minute.
Connect the resistor’s second leg to a socket
in column 8.
Connect the black jumper wire to the GND
socket on the Arduino, and the red to 5V.
Even if you switch these connections, this
circuit would still work because we are not
using any polarized components.
Lastly, connect a green jumper wire from a
socket in column 4 to A0, which is the
Arduino analog port 0.

Extracted from https://techexplorations.com
Page 148

https://techexplorations.com

Notice how you connected the green cable in column 4, where
the resistor and the photo-resistor meet? This type of wiring is
called a “voltage divider” or “impedance divider”, and its
purpose is to create an output voltage that is a fraction of the
input voltage to the divider. Look at the diagram (below):

Extracted from https://techexplorations.com
Page 149

https://techexplorations.com

Want to learn
electronics?

Extracted from https://techexplorations.com
Page 150

https://wp.techexplorations.com/wp-content/uploads/2016/03/S7-610-SIDE-FixedVoltageRegulator_1-00-10-13-380-small.jpg
https://techexplorations.com

Our course “Basic Electronics for Arduino Makers” is designed
specifically for people that use the Arduino as a learning and
creativity tool.

This course will teach you the basics of electronics so that you
know what things like current limiting resistors, voltage
dividers, power supplies, transistor switches, Ohm’s Law, and
lots more, actually are.

Learn More

Vin is represented by the red jumper wire in our Arduino
diagram, the earth symbol is represented by the black jumper
wire. The Vout is represented by the green jumper wire. Vout
depends on the impedance (resistance) of Z1 and Z2, which in
the case of our Arduino circuit are the resistor and the photo-
resistor. Since the resistor’s resistance is fixed, and the
resistance of the photo-resistor varies depending on the
ambient light situation, Vout will also vary. By taking a
measurement of Vout, we gain information about the light
intensity in our lab.

The higher the measurement in socket A0, the more intense
the light is. The closer to zero it gets, the darker our lab is.

That’s enough for now with the hardware. Let’s look at the
software.

Sketch
Here’s our program for this exercise (here is the sketch on
Github):

// the setup function runs once when you press reset:void
setup() { // initialize serial communication at 9600 bits per
second: Serial.begin(9600);}// the loop routine runs over and
over again forever:void loop() { // read the input on analog pin
0: int sensorValue = analogRead(A0); // print out the value you
read: Serial.println(sensorValue); delay(10);}

Extracted from https://techexplorations.com
Page 151

https://techexplorations.com//so/befam1/
https://gist.github.com/futureshocked/a9371ee8a86260932e8d77201a464669
https://gist.github.com/futureshocked/a9371ee8a86260932e8d77201a464669
https://techexplorations.com

Much of this sketch should be familiar to you now. There’s
setup(), loop(), and delay(), which we have seen before.

There’s a couple of new things here. First, look in the setup()
function. There is this statement:

Serial.begin(9600);

This creates a serial connection which the Arduino can use to
send text output to our terminal. This way the Arduino can
“talk” to us. This terminal can be opened by clicking on Tools
> Serial Monitor, and it looks like this:

Extracted from https://techexplorations.com
Page 152

https://techexplorations.com

We will be printing the light intensity value to the serial
monitor in a moment.

Next, have a look in the loop() function. In the first actual
statement after the comment, we use the analogRead(A0)
function to get a reading from socket A0 (“Analog 0”) and
store it to the local integer variable sensorValue. Easy, right?

We now have a value captured from the photo-resistor’s
voltage divider circuit, let’s print it to the monitor so we can
actually see it. Also easy, just do this:

Serial.println(sensorValue);

This statement, says: “Go to the serial port, print line with
content ‘sensorValue'”. The “ln” part of the println() function
means that this particular function will create a new line after
it prints out the text that is contained within the parentheses.
You could use just Serial.print(sensorValue), but then the
output would look like this:

9469459469459459469459469469469459469

… not very useful, very hard to read.

When you send this program to the Arduino, wait for it to
upload, and then open up the monitor. You will see something
like this:

946

946

946

946

946

946

Extracted from https://techexplorations.com
Page 153

https://techexplorations.com

946

946

946

The actual values will vary because of the differences in the
components you used in your circuit compared to mine, and of
course the lighting conditions in our two labs are probably
different. But as long as you see similar values (above 0 and
below 1024), then it worked!

Ready for some serious Arduino learning?
Start right now with Arduino Step by Step Getting Started

This is our most popular Arduino course, packed with high-
quality video, mini-projects, and everything you need to learn
Arduino from the ground up.

Extracted from https://techexplorations.com
Page 154

https://techexplorations.com

Impact sensor
Arduino Sensors & Actuators guide series

Detect tilt and impact
The tilt and impact sensors are simple switches which close a
circuit when positioned in a particular way. They are very
cheap and come in a variety of shapes. They are usually made
of a tiny metallic cylinder with a thin copper wire coming out of
one end.

In many cases, knowing the exact force and direction applied
to our gadgets is an overkill; just knowing that a bottle has
been tipped over is enough to know that the lid should close
automatically.

For simple cases like that, a 3-axis accelerometer is an
overkill. We could use a simple sensor that can detect the
shock of an impact or for being upside down.

Extracted from https://techexplorations.com
Page 155

https://techexplorations.com

Tilt and impact sensor
The tilt and impact sensor is a simple switch which closes a
circuit when positioned in a particular way. They are very
cheap, around $5 on eBay for a pack of 10. They come in a
variety of shapes, but usually they are made of a tiny metallic
cylinder with a thin copper wire coming out of one end.

The cylinder contains wires or a metal ball. When the device is
hit or when its orientation changes, the wires or the ball come
in contact with the wall of the cylinder and closes a circuit
between the cylinder and the external wire.

They can be very sensitive, so care must be given to
compensating for this sensitivity, otherwise we would be
getting readings that look chaotic. We are going to ignore this
sensitivity for now.

Here is what a tilt sensor looks like from the outside…

Cylindrical tilt and impact sensor

… and on the inside.

Extracted from https://techexplorations.com
Page 156

https://techexplorations.com

Assembly
To put this circuit together, we’ll just use the Arduino, no
breadboard is required.

We need to do a bit of soldering in order to connect the sensor
to wires which we can connect to the Arduino. If you have
never done soldering before, follow this tutorial for some
instructions. Be careful not to get burned!

Here’s what we are going to build.

Extracted from https://techexplorations.com
Page 157

https://learn.sparkfun.com/tutorials/how-to-solder---through-hole-soldering
https://techexplorations.com

Connect one wire to 5V and the other wire to A0 analog pin

Sketch
This is another very simple sketch. We’ll just use the analog
pin to determine if the switch inside the sensor is closed or
open. You could just as easily have used a digital pin since
there are only two states to detect, open or close, which nicely
translate to HIGH or LOW.

Here is the sketch on Github.

int out;void setup(){Serial.begin(9600); // sets the serial port
to 9600}void loop(){out = analogRead(0); // read analog input
pin 0Serial.println(out, DEC);delay(100); // wait 100ms for next

Extracted from https://techexplorations.com
Page 158

https://gist.github.com/futureshocked/3934b0e9cba045d3d773f369fb619e0d
https://techexplorations.com

reading}

Try out by connecting the sensor to the Arduino and moving
the sensor in different directions. This is easier if you use some
electrical tape to keep the sensor wires tidy. You could even
stick the sensor onto the Arduino, and move the whole
assembly instead of only the sensor. This will help in keeping
the connections firm.

Ready for some serious Arduino learning?
Start right now with Arduino Step by Step Getting Started

This is our most popular Arduino course, packed with high-
quality video, mini-projects, and everything you need to learn
Arduino from the ground up.

Extracted from https://techexplorations.com
Page 159

https://techexplorations.com

Acceleration sensor
Arduino Sensors & Actuators guide series

Measuring acceleration
Acceleration is defined as the rate by which the velocity of an
object changes. Having the ability to measure acceleration is
very useful. For this purpose, we use an accelerometer.

Acceleration is defined as the rate by which the velocity of an
object changes. The velocity of an object changes when a

Extracted from https://techexplorations.com
Page 160

https://techexplorations.com

force is applied to it. Acceleration is quantified by a direction
and a magnitude. Direction is the way to which a force is
directing the object, and magnitude relates to the strength of
the applied force. Acceleration is described by Newton’s
Second Law.

How can we measure acceleration?
Having the ability to measure acceleration is very useful. For
this purpose, we use an accelerometer. An accelerometer
measures the force that is applied to a small test mass. This
test mass is placed inside the device and is held in place by
one or more springs (or something equivalent). As gravity, or
other forces, are applied on the test mass, they make it move
towards a particular direction. The device measures the
distance this mass travels from its resting position. The longer
the distance, the stronger the force.

Imagine the accelerometer (or your self) in free fall, the test
mass, as it is falling, is “feeling” no force being applied upon it.
In a free-fall situation, the accelerometer would report no
acceleration at all.

Accelerometers are everywhere
We use accelerometers in cars to detect collisions (and deploy
airbags), or to gather performance statistics.

Accelerometers are embedded in smart phones to provide
orientation information, and for making games that are played
by moving a controller device.

You could use one in a toy car so that the car’s wheels stop
spinning if it has turned over, or to make toys that react to the
movement of a controller in 3-D space.

Accelerometers are also part of Inertial Navigation Systems
(INS) that help vehicles (ships, planes, cars, submarines etc.)

Extracted from https://techexplorations.com
Page 161

https://en.wikipedia.org/wiki/Newton%27s_Second_Law#Newton.27s_second_law
https://en.wikipedia.org/wiki/Newton%27s_Second_Law#Newton.27s_second_law
https://techexplorations.com

maintain knowledge of their location when other positioning
systems, like GPS, are not available.

In our experiment, we will use a common 3-axis
accelerometer, the ADXL335. It is very cheap at around $7 on
eBay, and very easy to connect to the Arduino through any of
the analog pins. It reports acceleration in 3 dimensions, X, Y
and Z. It is very robust as it can detect forces of up to 10,000
Gs (1 G is equivalent to the Earth’s gravity at the surface).

Assembly
Let’s puts together this circuit and test out the motion sensor.

We will need:

An Arduino
Five jumper wires
An ADXL335 3-axis accelerometer

The sensor takes three acceleration measurements, X, Y, and
Z. The Arduino reads the analog outputs 0, 1, and 2, acquires
the measurements, and prints them to the monitor.

Extracted from https://techexplorations.com
Page 162

https://techexplorations.com

Also, be very mindful of the power limits of this device. It
needs 3.3V input, not 5V! If you provide 5V you may actually
damage it!

Sketch
Done with the assembly, let work on the sketch now (here is
the sketch on Github).

int x, y, z;void setup(){Serial.begin(9600); // sets the serial
port to 9600}void loop(){x = analogRead(0); // read analog
input pin 0y = analogRead(1); // read analog input pin 1z =
analogRead(2); // read analog input pin
1Serial.print(“accelerations are x, y, z: “);Serial.print(x, DEC); //

Extracted from https://techexplorations.com
Page 163

https://gist.github.com/futureshocked/5b47a9279068e42828626b130d158354
https://gist.github.com/futureshocked/5b47a9279068e42828626b130d158354
https://techexplorations.com

print acceleration in the X axisSerial.print(” “); // prints a space
between the numbersSerial.print(y, DEC); // print acceleration
in the Y axisSerial.print(” “); // prints a space between the
numbersSerial.println(z, DEC); // print acceleration in the Z
axisdelay(100); // wait 100ms for next reading }

Lets see how it works. analogRead() reads the voltage present
at one of the analog pins. The accelerometer outputs voltage
to its three outputs relevant to the forces applied to it.

For example, at rest, the reading on the Z axis is around 410.
If I push the device upwards, I apply force along the Z axis
which makes the test weight inside the accelerometer “feel”
heavier, and the voltage on the Z pin increases, causing the
reading to increase (i.e. to ~470, in my experiment). If I push
the device downwards, the opposite happens.

By taking and evaluating measurements in all three axis, you
could make it possible for your device to know the precise
direction of its movement and the force applied to it.

Extracted from https://techexplorations.com
Page 164

https://techexplorations.com

Ultrasonic distance sensor
Arduino Sensors & Actuators guide series

Measure the distance to
another object with the
ultrasonic sensor
There are many types of technologies that can be used to
make a proximity sensor. In this article, we focus on the
ultrasonic sensor, which is essentially a “land sonar”: it emits a
high frequency sound, far beyond what the human ear can
hear, and waits for the echo.

There are lots of applications where we not only need to know
that an object, or a person, in nearby, but also how far they
are.

Imagine a robot moving around in a room. The robot can use a

Extracted from https://techexplorations.com
Page 165

https://techexplorations.com

distance (or proximity) sensor to detect that it is approaching
a wall or another object. Or, you could use a proximity sensor
to automatically open a door if a person is within a meter of
the sensor.

You find such sensors in cars (to help with parking and to avoid
small accidents), and in smart phones where the smartphone
can detect, for example, that the phone is held against the
user’s head, useful so that the screen is turned off to avoid
accidental touchscreen input.

The ultrasonic sensor
There are many types of technologies that can be used to
make a proximity sensor.

In this lecture we will focus on the ultrasonic sensor, which is
essentially a “land sonar”: it emits a high frequency sound, far
beyond what the human ear can hear, and waits for the echo.

Once it captures the echo, it counts the time that elapsed
between the emission of the ultrasound signal and the capture
of its echo, and based on that it calculates the approximate
distance of the object that produced the echo.

Extracted from https://techexplorations.com
Page 166

https://techexplorations.com

Ultrasonic sensors are solid-state devices, very reliable and
cheap. Especially in indoor environments, and for small spaces
(or measuring small distances), these sensors represent a
good choice. Anything that is solid enough to allow sounds to
bounce will work with these sensors.

If you want to measure or detect things like smoke and clouds,
you will need to use something else, perhaps a microwave
doppler radar.

For the Arduino, a commonly used proximity sensor is the HC-

Extracted from https://techexplorations.com
Page 167

https://techexplorations.com

SR04. You can find them on Ebay for less than $2 each.

They are very easy to use, let’s have a look.

Assembly
Let’s puts together this circuit and test out the motion sensor.

We will need:

The Arduino
Six jumper wires
An ultrasonic sensor, like the HC-SR04

Here’s what we are going to build (as shown in the schematic
below):

Extracted from https://techexplorations.com
Page 168

https://techexplorations.com

The sensor will constantly take distance measurements of
whatever happens to be in front of it: your hand, books etc.
The Arduino will receive these readings and print them to the
Serial monitor. Very simple.

Sketch
Done with the assembly, let work on the sketch now (here is
the sketch on Github).

#define trigPin 13#define echoPin 12void setup() {Serial.begin
(9600);pinMode(trigPin, OUTPUT);pinMode(echoPin,
INPUT);}void loop() {long duration,
distance;digitalWrite(trigPin,

Extracted from https://techexplorations.com
Page 169

https://gist.github.com/futureshocked/1289b789e668f099d0d32beb067658be
https://gist.github.com/futureshocked/1289b789e668f099d0d32beb067658be
https://techexplorations.com

LOW);delayMicroseconds(2);digitalWrite(trigPin,
HIGH);delayMicroseconds(10);digitalWrite(trigPin,
LOW);duration = pulseIn(echoPin, HIGH);distance =
(duration/2) / 29.1;if (distance >= 200 || distance <=
0){Serial.println(“Out of range”);}else
{Serial.print(distance);Serial.println(” cm”);}delay(500);}

There’s quite a lot happening in this small amount of code.

We define the sensor’s trigger and echo pins to be 13 and 12
respectively. In the setup() function, we initialize the Serial
monitor, and set pin 13 to be the output and pin 12 to be the
input.

Through pin 13, the Arduino will ask the sensor to trigger a
ping, similar to the “boing” noise that submarines emit when
they use their sonar. This ping, assuming it bounces of an
object in range, will come back and will be picked up by the
sensor’s receiver. The Arduino will know when that happens
because it is monitoring pin 12, which is connected to the
sensor’s echo pin.

In the loop() function, we first setup two variables of type long.
Long numbers are 4 bytes in size, a total of 32 bits, and can
hold very large numbers: -2,147,483,648 to 2,147,483,647.
The variable duration will hold the total number of
microseconds that it took for the ping to reach the object and
return to the sensor. The variable distance will contain the
distance to that object in centimeters.

The Arduino is triggering a ping by writing to the trigger pin
three pulses: first, a digital LOW for 2 microseconds, then a
digital HIGH for 10 microseconds and finally a digital LOW
which stays low until the next iteration of the loop.

Extracted from https://techexplorations.com
Page 170

https://techexplorations.com

It then uses the function pulseIn() to get the number of
microseconds in takes of the ping to come back. PulseIn()
accepts two parameters: a pin number (in our case it is 12,
stored in variable echoPin), and the pulse level we want to
detect, in our case it is HIGH because we want to detect the 10
microsecond ping we just emitted. As soon as the Arduino calls
the pulseIn() function, it starts timing. It returns the number of
microseconds from the time the function was called until it
detects the ping echo.

How Arduino calculates the distance
The distance is calculated by the Arduino. It divides by two the
duration that the pulseIn() function returned, since the ping
travels a total of twice the distance to the object (going there
and its echo coming back). It then divides again by the “magic
number” 29.1. This number derives from this calculation:

The speed of sound at 0 degrees celsius is measured to be
331.5 meters per second. At different temperatures, the speed
of sound is calculated by adjusting 331.5m/s for the
temperature by multiplying by 0.6:

SpeedOfSound(Temperature) = 331.5 + 0.6 * Temperature

At 20 degrees, this works out to be 343.5 m/s.

We need to convert the seconds to microseconds and the
length from meters to centimetres:

SpeedOfSound = 343.5 * 100 / 1,000,000 = 0.03435
cm/microseconds

This means that sound, at 20 degrees, can travel a distance of
0.03435 centimetres in one microsecond. If a signal and its
echo take X microseconds to do the round trip, then the total
distance covered is:

Total_distance = X * 0.03435 = X / 29.1

Extracted from https://techexplorations.com
Page 171

https://techexplorations.com

We adjust this so that we only include the duration of the one-
way trip to the target (instead of the return trip), and the
formula becomes:

distance = (X / 2) * 0.03435 = (X / 2) / 29.1

Wikipedia has a very good article on how to calculate the
speed of sound, for the curious.

Limitations
If the distance to a target is over 200 centimeters, the Arduino
reports that the target is out of range, since at that distance
measurements are not reliable.

The same happens if the distance is negative

Question to consider: why do we need to test for negative
distance?

Any other distance condition is valid, so the monitor will print
out the distance in centimeters.

Extracted from https://techexplorations.com
Page 172

https://en.wikipedia.org/wiki/Speed_of_sound
https://techexplorations.com

PIR sensor
Arduino Sensors & Actuators guide series

Detect motion with the
PIR sensor
Passive infrared (PIR) sensors are very common and typically
found in home electronics. They detect the heat that is
emitted by the body of a person in a room as it contrasts
against the background heat.

Extracted from https://techexplorations.com
Page 173

https://techexplorations.com

Knowing if something is moving is useful in many applications.

The classic example is security, where an alarm system can
detect an intruder moving inside a room, so that it can notify
the police.

Another common use is in home and office automation, where
you could get the lights to turn on and off automatically
depending on whether someone is still in the room or turning

Extracted from https://techexplorations.com
Page 174

https://techexplorations.com

on the flood light in your driveway as your car approaches.

There are several technologies used in motion sensors, each
with their own capabilities and price points.

PIR sensors
Passive infrared (PIR) sensors are very common and typically
found in home electronics.

They detect the heat that is emitted by the body of a person in
a room as it contrasts against the background heat.

A PIR sensor does not emit any energy, it just sits there and
waits for a heat source to enter its field of vision.

They look like this (an example of a home security system
motion sensor – below).

Extracted from https://techexplorations.com
Page 175

https://techexplorations.com

Ultrasonic distance sensors
An ultrasonic motion sensor uses ultrasounds to detect moving
objects.

Just like bats, an ultrasonic sensor emits ultrasounds at
frequencies from 30khz to 50kHz and then picks up their echo.

These sensors can often measure the time a signal takes to
return, and from that it can calculate the distance to the
object.

Therefore, ultrasonic sensors can calculate both distance from
an object as well as whether the object is moving. We had a
look at the ultrasonic distance sensor in the previous lesson.

Microwave motion sensors
A microwave motion sensor works on the same principle as the
ultrasonic sensor, except that instead of ultrasounds it emits
microwaves. They are still relatively cheap, and because
microwaves are much higher in terms of frequency than
ultrasounds, motion can be detected with a lot more detail.
Many microwave motion sensors can determine not only the

Extracted from https://techexplorations.com
Page 176

https://techexplorations.com

motion itself, but also distance and speed using the Doppler
effect.

Here is what a microwave sensor module looks like (of course
the module is covered by a plastic cover when installed –
below).

In this lecture, we will connect a passive infrared sensor to our
Arduino, calibrate it, and turn an LED on every time motion is
detected.

Assembly
Let’s puts together this circuit and test out the motion sensor.

We will need:

An Arduino
Four jumper wires
A PIR sensor, like the HC-SR501
One resistor, 1k
One LED

Extracted from https://techexplorations.com
Page 177

https://en.wikipedia.org/wiki/Doppler_effect
https://en.wikipedia.org/wiki/Doppler_effect
https://techexplorations.com

Here’s what we are going to build.

While you are connecting the motion sensor, it’s a good idea to
remove the sensor cover so you can see the pin markings,
ensuring that power is connected the right way.

This circuit will detect motion through the sensor, and send a
signal to the Arduino via digital pin 2. The Arduino will receive
the signal and in turn activate the LED via digital PIN 13.

Extracted from https://techexplorations.com
Page 178

https://techexplorations.com

Notice that the Arduino Uno board already has an small LED
connected to digital port 13, so you could choose to not
connect yours.

Sketch
Done with the assembly, let work on the sketch now.

Here is the sketch on Github.

/** PIR sensor tester*/int ledPin = 13; // choose the pin for the
LEDint inputPin = 2; // choose the input pin (for PIR sensor)int
pirState = LOW; // we start, assuming no motion detectedint
val = 0; // variable for reading the pin statusvoid setup()
{pinMode(ledPin, OUTPUT); // declare LED as
outputpinMode(inputPin, INPUT); // declare sensor as
inputSerial.begin(9600);}void loop(){val =
digitalRead(inputPin); // read input value if (val == HIGH) { //
check if the input is HIGH digitalWrite(ledPin, HIGH); // turn
LED ON if (pirState == LOW) { // we have just turned on
Serial.println(“Motion detected!”); // We only want to print // on
the output change, not statepirState = HIGH;}} else
{digitalWrite(ledPin, LOW); // turn LED OFFif (pirState ==
HIGH){ // we have just turned offSerial.println(“Motion
ended!”); // We only want to print on // the output change, not
statepirState = LOW;}}

By now, this sketch should be easy to read and understand.

We start by setting constants for the pins and values.

The LED is connected to digital pin 13, and the sensor’s output
to digital pin 2.

We also assume that when the Arduino starts, there is no
motion, so variable pirState is set to LOW, and val, the variable
to which the output state of the PIR sensor is stored, is 0
(LOW).

Extracted from https://techexplorations.com
Page 179

https://gist.github.com/futureshocked/f41fd93ced7a494f3c1bf4118f2d2a9a
https://techexplorations.com

In the setup() function, we set pin 13 to be output, and pin 2 to
be input. We also initialize the serial port so that we can see
text output in the monitor window.

In the loop() function, we constantly read the value of the PIR
sensor by using the digitalRead(inputPin) function. This
function reads voltage in the range of 0V to 3.3V (at least for
the sensor I am using), and the Arduino translates that to LOW
and HIGH respectively.

If HIGH is detected, the Arduino will set pin 13 to HIGH and this
will activate the LED. If the previous state of the sensor was
LOW, then the Arduino detects this as new motion, so it will
print a message to the monitor, and set pirState to HIGH. This
will prevent the Arduino from continuously printing out that
new motion was detected while the actual motion is still
continuing.

Upload it to see it working, don’t forget to open up the monitor
window (Tools > Serial Monitor). You should see something like
this:

If you are not sure what the pirState variable is actually doing,
do this little experiment:

Extracted from https://techexplorations.com
Page 180

https://techexplorations.com

Modify the sketch by replacing the lines:

if (pirState == LOW) { Serial.println(“Motion detected!”);
pirState = HIGH;}

with only:

Serial.println(“Motion detected!”);

… and the lines:

if (pirState == HIGH){ Serial.println(“Motion ended!”); pirState
= LOW;}

… with only:

Serial.println(“Motion ended!”);

Upload the edited sketch.

Open the monitor and activate the sensor by waving your
hand above it. What can you see in the monitor?

You can calibrate the sensitivity and amount of time that the
sensor stays activated by turning the two small orange knobs.

Experiment with them to see the effect they have on the
sensor’s output.

Extracted from https://techexplorations.com
Page 181

https://techexplorations.com

BME280
Arduino Sensors & Actuators guide series

Temperature and
barometric sensor
BME280
Atmospheric pressure is defined as the weight of a column of
air above an object. Measuring the atmospheric pressure has
several applications. We will be measuring atmospheric
pressure by using the BME280 sensor.

Measuring the atmospheric pressure has several applications.

Extracted from https://techexplorations.com
Page 182

https://en.wikipedia.org/wiki/Atmospheric_pressure
https://techexplorations.com

Obviously, if you are a meteorologist, knowing the pressure at
a geographical location helps forecasting the weather. But
there’s more.

Atmospheric pressure is defined as the weight of a column of
air above an object.

As the height of a column of air above an object changes
depending on its altitude, so does the weight of that column.

Atmospheric pressure at the surface of the sea is higher than
that on the top of a tall mountain because the column of air
above it is higher. Therefore, measuring the atmospheric
pressure is also a simple way of figuring out your altitude, or
the altitude of one of your flying gadgets.

The standard unit for measuring atmospheric pressure is “Pa”,
or “Pascals”. At sea level, the standard pressure is defined to
be 101.325 kPa, or 101,325 Pa.

The BME280 sensor
We will be measuring atmospheric pressure by using the
BME280 sensor. This sensor costs around $8 on eBay. It can
measure pressure from 300hPa to 1100hPa, which converts to
around 500 meters below sea level to 9,000 meters above sea
level.

It’s accuracy is also excellent, around 0.03hPa. “hPa” is
pronounced “hectoPascal”.

Another nice thing about this sensor is that it also measures
the temperature.

The BME280 talks to other devices via the I2C interface, a
digital serial communications interface that only needs two
wires for communication, and two for power.

One communication wire is called SDA, and it transmits data,

Extracted from https://techexplorations.com
Page 183

https://techexplorations.com

while the second, SCL, is for the clock signal.

A clock signal is needed because I2C is a synchronous
interface.

The sensor uses 3.3V or 5V, which the Arduino conveniently
provides. Here’s what this sensor looks like (below).

The BME280 measures pressure by taking advantage of the
piezo-resistive property that silicon and germanium have.

This property involves the change in resistance in those
materials depending on the amount of mechanical load that is
put on them.

Assembly
Let’s puts together this circuit and try out the sensor.

Extracted from https://techexplorations.com
Page 184

https://en.wikipedia.org/wiki/Data_transmission#Asynchronous_and_synchronous_data_transmission
https://en.wikipedia.org/wiki/Piezoresistive_effect
https://techexplorations.com

We will need:

An Arduino
Four jumper wires
A BME280 sensor device

This is very simple wiring using the I2C protocol:

Connect Vin to the power supply, 3-5V is
fine. Use the same voltage that the
microcontroller logic is based off of. For
most Arduinos, that is 5V
Connect GND to common power/data ground
Connect the SCK pin to the I2C clock SCL pin
on your Arduino. On an UNO, this is also
known as A5,
Connect the SDI pin to the I2C data SDA pin
on your Arduino. On an UNO, this is also
known as A4.

Extracted from https://techexplorations.com
Page 185

https://techexplorations.com

Sketch
Done with the assembly, lets work on the sketch now.

To begin reading sensor data, we need to install the
Adafruit_BME280 library. It is available from the Arduino library
manager so we recommend using that.

From the IDE open up the library manager following the menu
Sketch/Include Library/ Manage Libraries And type in adafruit
bme280 to locate the library. Click Install and wait until it is
finished.

Extracted from https://techexplorations.com
Page 186

https://techexplorations.com

Also add the Adafruit Unified Sensor library the same way.

Here’s the sketch, it comes straight of the examples that are
included with the Arduino IDE. I have added some comments
to help you understand what is going on (here is the sketch on
Github):

#include //*Include the Wire library which allows to use the I2C
interface*#include #include //*library to easily take readings
from the sensor*#define SEALEVELPRESSURE_HPA
(1013.25)Adafruit_BME280 bme; //*Declare the bpm variable,
an easy to remember reference for the device*unsigned long
delayTime;void setup() { Serial.begin(9600); //*Setup serial
communication and speed* Serial.println(F(“BME280 test”));
bool status; status = bme.begin(); //*Try to start the device* if
(!status) { //*If it is not starting, print message*
Serial.println(“Could not find a valid BME280 sensor, check
wiring!”); while (1); //* Go in an endless loop. This prevents the
Arduino from calling the loop function* } Serial.println(“–
Default Test –“); delayTime = 1000; Serial.println();}void
loop() { printValues(); delay(delayTime);}void printValues() {
Serial.print(“Temperature = “); //*Read and print temperature*
Serial.print(bme.readTemperature()); Serial.println(” *C”);
Serial.print(“Pressure = “); //*Read and print pressure*
Serial.print(bme.readPressure() / 100.0F); Serial.println(”
hPa”); // Calculate altitude assuming ‘standard’ barometric
pressure of 1013.25 millibar = 101325 Pascal
Serial.print(“Approx. Altitude = “);
Serial.print(bme.readAltitude(SEALEVELPRESSURE_HPA));
//*Read and print altitude*// you can get a more precise
measurement of altitude if you know the current sea level
pressure which willvvary with weather and such. If it is 1015
millibars that is equal to 101500 Pascals. Serial.println(” m”);
Serial.print(“Humidity = “); Serial.print(bme.readHumidity());
//*Read and print humidity* Serial.println(” %”);
Serial.println();}

Now we’ll run this sketch and look at the monitor output:

And that is how you connect and use the BME280 barometric

Extracted from https://techexplorations.com
Page 187

https://gist.github.com/futureshocked/05fb1fe7fa6b9c5a68dbe910266686e3
https://gist.github.com/futureshocked/05fb1fe7fa6b9c5a68dbe910266686e3
https://techexplorations.com

sensor with the Arduino!

Extracted from https://techexplorations.com
Page 188

https://techexplorations.com

Measuring temperature and humidity
Arduino Sensors & Actuators guide series

Measuring temperature
and humidity
The DHT22 is a versatile, affordable, and reliable sensor that is
widely used for measuring temperature and humidity in
various projects. This guide provides information on the
sensor’s operational parameters, wiring instructions, and a
sketch for extracting temperature and humidity readings.

Introduction
In this article, we will explore the DHT22 (or DHT11) sensor,
which is widely used for measuring temperature and humidity.
This versatile digital sensor provides accurate readings without
the need for additional calculations or conversions. Let’s dive
into the details and learn how to use this sensor effectively.

Extracted from https://techexplorations.com
Page 189

https://techexplorations.com

The DHT22 sensor

Understanding the DHT22 Sensor
The DHT22 sensor, also known as the AM2302, operates within
a power supply range of 3.3 to 6 volts DC. This flexibility allows
it to be used with various Arduino boards. It can be used with
3.3V Arduino boards like the Arduino Due or Arduino Pro Mini.
Just connect it to the 3.3V pin. If you’re using it with the 5V
Arduino Uno, connect it to the 5V pin.

The DHT22 sensor, also known as the AM2302

The sensor’s operational parameters indicate that it can
measure temperatures ranging from -40 to 80 degrees Celsius
and relative humidity from 0 to 100 percent. With an accuracy

Extracted from https://techexplorations.com
Page 190

https://www.sparkfun.com/datasheets/Sensors/Temperature/DHT22.pdf
https://techexplorations.com

of ±0.5 degrees Celsius for temperature and ±2 percent for
relative humidity, the DHT22 provides reliable results for most
applications. In case you require higher precision, I have
another article that introduces the BMP180, a more accurate
environmental sensor for temperature and humidity.
Additionally, the DHT22 offers a resolution of 0.1 percent for
relative humidity and 0.1 degrees Celsius for temperature.

The sensor’s datasheet provides information about its
operational parameters.

It is important to note that the DHT22 sensor operates at a
slow speed, taking about two seconds to provide a reliable
reading to the microcontroller. Therefore, avoid making
frequent calls to the sensor for new values.

Wiring

Wiring Diagram
Below you can see the wiring diagram. Make sure to orient the
sensor with the grill facing you, not the back, to ensure the
correct pin numbering.

Extracted from https://techexplorations.com
Page 191

https://techexplorations.com

Pin number one is located on the leftmost end of the sensor,
while pin number four is on the rightmost end. In some cases,
you may come across DHT22 sensors with only three pins.
These are typically sold as part of a breakout for the sensor. In
these cases, the number three pin is left unconnected. You can
simply push it up and set it aside.

Wiring the DHT22 Sensor
To wire the DHT22 sensor to an Arduino board, follow these
simple steps:

Extracted from https://techexplorations.com
Page 192

https://techexplorations.com

Connect pin number 1 of the sensor to the 5-1.
volt pin on the Arduino (or the 3.3-volt pin
for a 3.3-volt Arduino).
Connect pin number 4 of the sensor to the2.
ground pin on the Arduino.
Connect pin number 2 of the sensor (the3.
data pin) to a digital pin on the Arduino (e.g.,
digital pin number 2). You can configure it to
use any of the available digital pins on your
Arduino.
Include a 10 kiloohm pull-up resistor4.
between pin number 2 and the 5-volt pin.
This resistor ensures a stable voltage when
the sensor is not transmitting data.

Pull-Up Resistors
A pull-up resistor is used to pull up the voltage at pin number
two to five volts. This ensures a defined voltage when the DHT
sensor is not transmitting any data, preventing a condition
called floating. In this case, a strong pull-up resistor with a
value of 10 kiloohms is used, but pull-up resistors can range
from 10 kiloohms to 50 or 100 kiloohms, or even higher.

To better understand the concept of pull-up and pull-down
resistors, you can refer to my article here. It provides
background information and a deeper understanding of the
role of this resistor.

Sketch
Below is the sketch that provides some information about the
connections as well.

Extracted from https://techexplorations.com
Page 193

https://techexplorations.com/guides/arduino/common-circuits/pull-up-and-pull-down-resistors/
https://techexplorations.com

[tcb-script
src=”https://emgithub.com/embed-v2.js?target=https%3A%2F
%2Fgithub.com%2Ffutureshocked%2FArduinoSbSGettingStart
ed%2Fblob%2Fmaster%2F_0430_-_DHT22%2F_0430_-
_DHT22.ino&style=night-
owl&type=code&showFullPath=on&fetchFromJsDelivr=on”][/tc
b-script]

Extracting Temperature and Humidity
Readings
To extract temperature and humidity readings from the DHT22
sensor, we use the Adafruit DHT library. This library supports
various DHT sensors, including the DHT22, and provides
functions for reading the temperature and humidity values
from the sensor.

#include “DHT.h”

Within the Arduino sketch, specify the sensor type (DHT22)
and the data pin connected to the sensor (e.g., digital pin
number two, or you can adjust it to whichever digital pin you
have available).

#define DHTTYPE DHT22

Extracted from https://techexplorations.com
Page 194

https://github.com/adafruit/DHT-sensor-library
https://emgithub.com/embed-v2.js?target=https%3A%2F
https://techexplorations.com

#define DHTPIN 2

In line 76 of the sketch, the C language dht object is created.
The parameters for the data pin and type are passed in.

#define DHTPIN 2

In the setup() method, the serial monitor is started and a
message is printed to begin. Then, the sensor is started.In the
loop(), there is a two-second delay between subsequent
measurements, as stated in the datasheet.

Remember to include a two-second delay
between subsequent measurements to allow the
sensor to provide accurate readings.

After the two-second delay, the humidity measurement is
obtained by calling the readHumidity() function on the dht
object, and the result is stored in a floating-point variable
called h. The same process is repeated for temperature with
the dht.readTemperature() function.

By default, the library provides temperature readings in
Celsius. To get readings in Fahrenheit, the true parameter
must be passed into the readTemperature() function. This
eliminates the need to create a custom function for Celsius to
Fahrenheit conversion.

Next, a check is performed to ensure that the sensor is
functioning properly. If the sensor is malfunctioning, the values
obtained may not be actual numbers and could be something
like “not available” or garbage. The function isnan() is used to
check if the values are valid numbers before printing them on
the serial monitor.

The results for humidity and temperature in Fahrenheit or
Celsius are printed with Serial.print(). The computeHeatIndex()
function calculates the heat index, which is the perceived

Extracted from https://techexplorations.com
Page 195

https://techexplorations.com

temperature based on the combination of actual temperature
and humidity. The library internally calculates the heat index
using the humidity and temperature readings. If you want to
learn more about the heat index, you can refer to the relevant
Wikipedia article. The table in the article shows examples of
how the perceived temperature differs from the measured
temperature based on relative humidity.

Uploading the Sketch
All right, let’s upload the sketch and see the hardware in
action. Currently, the humidity in my lab is around 30 percent,
the temperature is 21 degrees Celsius, and the heat index is
19 percent. Due to the low humidity, the apparent
temperature is slightly lower than the actual temperature.

Testing the accuracy of the DHT22 with a multimeter

To test the accuracy of the DHT22, I can use my multimeter.
According to my multimeter, the current temperature is 22
degrees Celsius, while the DHT22 is giving me a reading of 21
degrees Celsius. However, it’s important to note that my
multimeter is not perfect either. I don’t have a calibrated
temperature meter or thermometer specifically for lab use, so I
can’t determine which reading is more accurate. Nevertheless,

Extracted from https://techexplorations.com
Page 194

https://en.wikipedia.org/wiki/Heat_index
https://en.wikipedia.org/wiki/Heat_index#Table_of_values
https://techexplorations.com

for most users, a slight difference of 21 to 22 degrees Celsius
is not significant.

Interpreting the Results
Once you have obtained the temperature and humidity
readings, you can use them for various purposes. If desired,
you can calculate the heat index, which is particularly useful
for understanding how humans perceive the temperature in a
given environment. Keep in mind that the DHT22 sensor might
not be as fast as other sensors, as it takes about two seconds
to provide a reliable reading. Therefore, avoid querying the
sensor too frequently to allow for accurate data collection.

Conclusion
The DHT22 sensor is an excellent choice for measuring
temperature and humidity in various projects. Its simplicity,
affordability, accuracy, and reliability make it a popular option
among hobbyists and professionals alike.

Whether you are building an environmental monitoring system
or simply curious about the weather conditions, the DHT22
sensor is a valuable tool to have in your electronics
toolkit/highly recommended sensor for anyone who is
developing an environment gadget.

If you have any questions or need further assistance, feel free
to reach out. Happy sensing!

Ready for some serious Arduino learning?
Start right now with Arduino Step by Step Getting Started

This is our most popular Arduino course, packed with high-
quality video, mini-projects, and everything you need to learn
Arduino from the ground up.

Extracted from https://techexplorations.com
Page 195

https://techexplorations.com

	Blank Page
	Blank Page

